Simon Willison’s Weblog

Subscribe

52 items tagged “homebrewllms”

2024

Ultravox (via) Ultravox is "a multimodal Speech LLM built around a pretrained Whisper and Llama 3 backbone". It's effectively an openly licensed version of half of the GPT-4o model OpenAI demoed (but did not fully release) a few weeks ago: Ultravox is multimodal for audio input, but still relies on a separate text-to-speech engine for audio output.

You can try it out directly in your browser through this page on AI.TOWN - hit the "Call" button to start an in-browser voice conversation with the model.

I found the demo extremely impressive - really low latency and it was fun and engaging to talk to. Try saying "pretend to be a wise and sarcastic old fox" to kick it into a different personality.

The GitHub repo includes code for both training and inference, and the full model is available from Hugging Face - about 30GB of .safetensors files.

Ultravox says it's licensed under MIT, but I would expect it to also have to inherit aspects of the Llama 3 license since it uses that as a base model. # 10th June 2024, 5:34 am

PaliGemma model README (via) One of the more over-looked announcements from Google I/O yesterday was PaliGemma, an openly licensed VLM (Vision Language Model) in the Gemma family of models.

The model accepts an image and a text prompt. It outputs text, but that text can include special tokens representing regions on the image. This means it can return both bounding boxes and fuzzier segment outlines of detected objects, behavior that can be triggered using a prompt such as "segment puffins".

You can try it out on Hugging Face.

It's a 3B model, making it feasible to run on consumer hardware. # 15th May 2024, 9:16 pm

experimental-phi3-webgpu (via) Run Microsoft’s excellent Phi-3 model directly in your browser, using WebGPU so didn’t work in Firefox for me, just in Chrome.

It fetches around 2.1GB of data into the browser cache on first run, but then gave me decent quality responses to my prompts running at an impressive 21 tokens a second (M2, 64GB).

I think Phi-3 is the highest quality model of this size, so it’s a really good fit for running in a browser like this. # 9th May 2024, 10:21 pm

microsoft/Phi-3-mini-4k-instruct-gguf (via) Microsoft’s Phi-3 LLM is out and it’s really impressive. This 4,000 token context GGUF model is just a 2.2GB (for the Q4 version) and ran on my Mac using the llamafile option described in the README. I could then run prompts through it using the llm-llamafile plugin.

The vibes are good! Initial test prompts I’ve tried feel similar to much larger 7B models, despite using just a few GBs of RAM. Tokens are returned fast too—it feels like the fastest model I’ve tried yet.

And it’s MIT licensed. # 23rd April 2024, 5:40 pm

We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone.

Phi-3 Technical Report # 23rd April 2024, 3 am

Options for accessing Llama 3 from the terminal using LLM

Visit Options for accessing Llama 3 from the terminal using LLM

Llama 3 was released on Thursday. Early indications are that it’s now the best available openly licensed model—Llama 3 70b Instruct has taken joint 5th place on the LMSYS arena leaderboard, behind only Claude 3 Opus and some GPT-4s and sharing 5th place with Gemini Pro and Claude 3 Sonnet. But unlike those other models Llama 3 70b is weights available and can even be run on a (high end) laptop!

[... 1962 words]

llm-gpt4all. New release of my LLM plugin which builds on Nomic's excellent gpt4all Python library. I've upgraded to their latest version which adds support for Llama 3 8B Instruct, so after a 4.4GB model download this works:

llm -m Meta-Llama-3-8B-Instruct "say hi in Spanish" # 20th April 2024, 5:58 pm

Mistral tweet a magnet link for mixtral-8x22b. Another open model release from Mistral using their now standard operating procedure of tweeting out a raw torrent link.

This one is an 8x22B Mixture of Experts model. Their previous most powerful openly licensed release was Mixtral 8x7B, so this one is a whole lot bigger (a 281GB download)—and apparently has a 65,536 context length, at least according to initial rumors on Twitter. # 10th April 2024, 2:31 am

Gemma: Introducing new state-of-the-art open models. Google get in on the openly licensed LLM game: Gemma comes in two sizes, 2B and 7B, trained on 2 trillion and 6 trillion tokens respectively. The terms of use “permit responsible commercial usage”. In the benchmarks it appears to compare favorably to Mistral and Llama 2.

Something that caught my eye in the terms: “Google may update Gemma from time to time, and you must make reasonable efforts to use the latest version of Gemma.”

One of the biggest benefits of running your own model is that it can protect you from model updates that break your carefully tested prompts, so I’m not thrilled by that particular clause.

UPDATE: It turns out that clause isn’t uncommon—the phrase “You shall undertake reasonable efforts to use the latest version of the Model” is present in both the Stable Diffusion and BigScience Open RAIL-M licenses. # 21st February 2024, 4:22 pm

2023

The AI trust crisis

Visit The AI trust crisis

Dropbox added some new AI features. In the past couple of days these have attracted a firestorm of criticism. Benj Edwards rounds it up in Dropbox spooks users with new AI features that send data to OpenAI when used.

[... 1733 words]

Build an image search engine with llm-clip, chat with models with llm chat

Visit Build an image search engine with llm-clip, chat with models with llm chat

LLM is my combination CLI tool and Python library for working with Large Language Models. I just released LLM 0.10 with two significant new features: embedding support for binary files and the llm chat command.

[... 1188 words]

Running my own LLM (via) Nelson Minar describes running LLMs on his own computer using my LLM tool and llm-gpt4all plugin, plus some notes on trying out some of the other plugins. # 16th August 2023, 10:42 pm

Run Llama 2 on your own Mac using LLM and Homebrew

Llama 2 is the latest commercially usable openly licensed Large Language Model, released by Meta AI a few weeks ago. I just released a new plugin for my LLM utility that adds support for Llama 2 and many other llama-cpp compatible models.

[... 1423 words]

Llama 2: The New Open LLM SOTA. I’m in this Latent Space podcast, recorded yesterday, talking about the Llama 2 release. # 19th July 2023, 5:37 pm

llama2-mac-gpu.sh (via) Adrien Brault provided this recipe for compiling llama.cpp on macOS with GPU support enabled (“LLAMA_METAL=1 make”) and then downloading and running a GGML build of Llama 2 13B. # 19th July 2023, 4:04 am

Ollama (via) This tool for running LLMs on your own laptop directly includes an installer for macOS (Apple Silicon) and provides a terminal chat interface for interacting with models. They already have Llama 2 support working, with a model that downloads directly from their own registry service without need to register for an account or work your way through a waiting list. # 18th July 2023, 9 pm

Weeknotes: Self-hosted language models with LLM plugins, a new Datasette tutorial, a dozen package releases, a dozen TILs

A lot of stuff to cover from the past two and a half weeks.

[... 1742 words]

My LLM CLI tool now supports self-hosted language models via plugins

Visit My LLM CLI tool now supports self-hosted language models via plugins

LLM is my command-line utility and Python library for working with large language models such as GPT-4. I just released version 0.5 with a huge new feature: you can now install plugins that add support for additional models to the tool, including models that can run on your own hardware.

[... 1656 words]

Databricks Signs Definitive Agreement to Acquire MosaicML, a Leading Generative AI Platform. MosaicML are the team behind MPT-7B and MPT-30B, two of the most impressive openly licensed LLMs. They just got acquired by Databricks for $1.3 billion dollars. # 30th June 2023, 1:43 am

abacaj/mpt-30B-inference. MPT-30B, released last week, is an extremely capable Apache 2 licensed open source language model. This repo shows how it can be run on a CPU, using the ctransformers Python library based on GGML. Following the instructions in the README got me a working MPT-30B model on my M2 MacBook Pro. The model is a 19GB download and it takes a few seconds to start spitting out tokens, but it works as advertised. # 29th June 2023, 3:27 am

MLC: Bringing Open Large Language Models to Consumer Devices (via) “We bring RedPajama, a permissive open language model to WebGPU, iOS, GPUs, and various other platforms.” I managed to get this running on my Mac (see via link) with a few tweaks to their official instructions. # 22nd May 2023, 7:25 pm

LocalAI (via) “Self-hosted, community-driven, local OpenAI-compatible API”. Designed to let you run local models such as those enabled by llama.cpp without rewriting your existing code that calls the OpenAI REST APIs. Reminds me of the various S3-compatible storage APIs that exist today. # 14th May 2023, 1:05 pm

Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs (via) There’s a lot to absorb about this one. Mosaic trained this model from scratch on 1 trillion tokens, at a cost of $200,000 taking 9.5 days. It’s Apache-2.0 licensed and the model weights are available today.

They’re accompanying the base model with an instruction-tuned model called MPT-7B-Instruct (licensed for commercial use) and a non-commercially licensed MPT-7B-Chat trained using OpenAI data. They also announced MPT-7B-StoryWriter-65k+—“a model designed to read and write stories with super long context lengths”—with a previously unheard of 65,000 token context length.

They’re releasing these models mainly to demonstrate how inexpensive and powerful their custom model training service is. It’s a very convincing demo! # 5th May 2023, 7:05 pm

No Moat: Closed AI gets its Open Source wakeup call — ft. Simon Willison (via) I joined the Latent Space podcast yesterday (on short notice, so I was out and about on my phone) to talk about the leaked Google memo about open source LLMs. This was a Twitter Space, but swyx did an excellent job of cleaning up the audio and turning it into a podcast. # 5th May 2023, 6:17 pm

Leaked Google document: “We Have No Moat, And Neither Does OpenAI”

Visit Leaked Google document: "We Have No Moat, And Neither Does OpenAI"

SemiAnalysis published something of a bombshell leaked document this morning: Google “We Have No Moat, And Neither Does OpenAI”.

[... 1073 words]

OpenLLaMA. The first openly licensed model I’ve seen trained on the RedPajama dataset. This initial release is a 7B model trained on 200 billion tokens, but the team behind it are promising a full 1 trillion token model in the near future. I haven’t found a live demo of this one running anywhere yet. # 3rd May 2023, 8:58 pm

replit-code-v1-3b (via) As promised last week, Replit have released their 2.7b “Causal Language Model”, a foundation model trained from scratch in partnership with MosaicML with a focus on code completion. It’s licensed CC BY-SA-4.0 and is available for commercial use. They repo includes a live demo and initial experiments with it look good—you could absolutely run a local GitHub Copilot style editor on top of this model. # 3rd May 2023, 8:09 pm

We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. [...] We can execute SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, in under 4.5 hours, and can reach 60% unstructured sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time.

SparseGPT, by Elias Frantar and Dan Alistarh # 3rd May 2023, 7:48 pm

Let’s be bear or bunny

Visit Let's be bear or bunny

The Machine Learning Compilation group (MLC) are my favourite team of AI researchers at the moment.

[... 599 words]

MLC LLM (via) From MLC, the team that gave us Web LLM and Web Stable Diffusion. “MLC LLM is a universal solution that allows any language model to be deployed natively on a diverse set of hardware backends and native applications”. I installed their iPhone demo from TestFlight this morning and it does indeed provide an offline LLM that runs on my phone. It’s reasonably capable—the underlying model for the app is vicuna-v1-7b, a LLaMA derivative. # 29th April 2023, 5:43 pm