Simon Willison’s Weblog

Subscribe

789 items tagged “ai”

2024

[… OpenAI’s o1] could work its way to a correct (and well-written) solution if provided a lot of hints and prodding, but did not generate the key conceptual ideas on its own, and did make some non-trivial mistakes. The experience seemed roughly on par with trying to advise a mediocre, but not completely incompetent, graduate student. However, this was an improvement over previous models, whose capability was closer to an actually incompetent graduate student.

Terrence Tao

# 15th September 2024, 12:04 am / o1, generative-ai, openai, mathematics, ai, llms

It's a bit sad and confusing that LLMs ("Large Language Models") have little to do with language; It's just historical. They are highly general purpose technology for statistical modeling of token streams. A better name would be Autoregressive Transformers or something.

They don't care if the tokens happen to represent little text chunks. It could just as well be little image patches, audio chunks, action choices, molecules, or whatever. If you can reduce your problem to that of modeling token streams (for any arbitrary vocabulary of some set of discrete tokens), you can "throw an LLM at it".

Andrej Karpathy

# 14th September 2024, 7:50 pm / andrej-karpathy, llms, ai, generative-ai

Believe it or not, the name Strawberry does not come from the “How many r’s are in strawberry” meme. We just chose a random word. As far as we know it was a complete coincidence.

Noam Brown, OpenAI

# 13th September 2024, 11:35 am / o1, generative-ai, openai, ai, llms

There is superstition about creativity, and for that matter, about thinking in every sense, and it's part of the history of the field of artificial intelligence that every time somebody figured out how to make a computer do something - play good checkers, solve simple but relatively informal problems - there was a chorus of critics to say, but that's not thinking.

Pamela McCorduck, in 1979

# 13th September 2024, 7:49 am / ai

o1-mini is the most surprising research result I've seen in the past year

Obviously I cannot spill the secret, but a small model getting >60% on AIME math competition is so good that it's hard to believe

Jason Wei (OpenAI)

# 12th September 2024, 11:45 pm / o1, generative-ai, openai, ai, llms

LLM 0.16. New release of LLM adding support for the o1-preview and o1-mini OpenAI models that were released today.

# 12th September 2024, 11:20 pm / llm, projects, generative-ai, openai, ai, llms, o1

Notes on OpenAI’s new o1 chain-of-thought models

OpenAI released two major new preview models today: o1-preview and o1-mini (that mini one is not a preview)—previously rumored as having the codename “strawberry”. There’s a lot to understand about these models—they’re not as simple as the next step up from GPT-4o, instead introducing some major trade-offs in terms of cost and performance in exchange for improved “reasoning” capabilities.

[... 1,568 words]

Pixtral 12B. Mistral finally have a multi-modal (image + text) vision LLM!

I linked to their tweet, but there’s not much to see there - in now classic Mistral style they released the new model with an otherwise unlabeled link to a torrent download. A more useful link is mistral-community/pixtral-12b-240910 on Hugging Face, a 25GB “Unofficial Mistral Community” copy of the weights.

Pixtral was announced at Mistral’s AI Summit event in San Francisco today. It has 128,000 token context, is Apache 2.0 licensed and handles 1024x1024 pixel images. They claim it’s particularly good for OCR and information extraction. It’s not available on their La Platforme hosted API yet, but that’s coming soon.

A few more details can be found in the release notes for mistral-common 1.4.0. That’s their open source library of code for working with the models - it doesn’t actually run inference, but it includes the all-important tokenizer, which now includes three new special tokens: [IMG], [IMG_BREAK] and [IMG_END].

# 11th September 2024, 10:18 pm / vision-llms, mistral, generative-ai, ai, llms

Notes from my appearance on the Software Misadventures Podcast

Visit Notes from my appearance on the Software Misadventures Podcast

I was a guest on Ronak Nathani and Guang Yang’s Software Misadventures Podcast, which interviews seasoned software engineers about their careers so far and their misadventures along the way. Here’s the episode: LLMs are like your weird, over-confident intern | Simon Willison (Datasette).

[... 1,740 words]

Telling the AI to "make it better" after getting a result is just a folk method of getting an LLM to do Chain of Thought, which is why it works so well.

Ethan Mollick

# 10th September 2024, 3:12 pm / prompt-engineering, ethan-mollick, generative-ai, ai, llms

files-to-prompt 0.3. New version of my files-to-prompt CLI tool for turning a bunch of files into a prompt suitable for piping to an LLM, described here previously.

It now has a -c/--cxml flag for outputting the files in Claude XML-ish notation (XML-ish because it's not actually valid XML) using the format Anthropic describe as recommended for long context:

files-to-prompt llm-*/README.md --cxml | llm -m claude-3.5-sonnet \
  --system 'return an HTML page about these plugins with usage examples' \
  > /tmp/fancy.html

Here's what that gave me.

The format itself looks something like this:

<documents>
<document index="1">
<source>llm-anyscale-endpoints/README.md</source>
<document_content>
# llm-anyscale-endpoints
...
</document_content>
</document>
</documents>

# 9th September 2024, 5:57 am / anthropic, claude, tools, projects, generative-ai, ai, llms, prompt-engineering

json-flatten, now with format documentation. json-flatten is a fun little Python library I put together a few years ago for converting JSON data into a flat key-value format, suitable for inclusion in an HTML form or query string. It lets you take a structure like this one:

{"foo": {"bar": [1, True, None]}

And convert it into key-value pairs like this:

foo.bar.[0]$int=1
foo.bar.[1]$bool=True
foo.bar.[2]$none=None

The flatten(dictionary) function function converts to that format, and unflatten(dictionary) converts back again.

I was considering the library for a project today and realized that the 0.3 README was a little thin - it showed how to use the library but didn't provide full details of the format it used.

On a hunch, I decided to see if files-to-prompt plus LLM plus Claude 3.5 Sonnet could write that documentation for me. I ran this command:

files-to-prompt *.py | llm -m claude-3.5-sonnet --system 'write detailed documentation in markdown describing the format used to represent JSON and nested JSON as key/value pairs, include a table as well'

That *.py picked up both json_flatten.py and test_json_flatten.py - I figured the test file had enough examples in that it should act as a good source of information for the documentation.

This worked really well! You can see the first draft it produced here.

It included before and after examples in the documentation. I didn't fully trust these to be accurate, so I gave it this follow-up prompt:

llm -c "Rewrite that document to use the Python cog library to generate the examples"

I'm a big fan of Cog for maintaining examples in READMEs that are generated by code. Cog has been around for a couple of decades now so it was a safe bet that Claude would know about it.

This almost worked - it produced valid Cog syntax like the following:

[[[cog
example = {
"fruits": ["apple", "banana", "cherry"]
}

cog.out("```json\n")
cog.out(str(example))
cog.out("\n```\n")
cog.out("Flattened:\n```\n")
for key, value in flatten(example).items():
    cog.out(f"{key}: {value}\n")
cog.out("```\n")
]]]
[[[end]]]

But that wasn't entirely right, because it forgot to include the Markdown comments that would hide the Cog syntax, which should have looked like this:

<!-- [[[cog -->
...
<!-- ]]] -->
...
<!-- [[[end]]] -->

I could have prompted it to correct itself, but at this point I decided to take over and edit the rest of the documentation by hand.

The end result was documentation that I'm really happy with, and that I probably wouldn't have bothered to write if Claude hadn't got me started.

# 7th September 2024, 5:43 am / claude-3-5-sonnet, llm, anthropic, claude, ai, llms, ai-assisted-programming, generative-ai, projects, json

Calling LLMs from client-side JavaScript, converting PDFs to HTML + weeknotes

Visit Calling LLMs from client-side JavaScript, converting PDFs to HTML + weeknotes

I’ve been having a bunch of fun taking advantage of CORS-enabled LLM APIs to build client-side JavaScript applications that access LLMs directly. I also span up a new Datasette plugin for advanced permission management.

[... 2,050 words]

Qwen2-VL: To See the World More Clearly. Qwen is Alibaba Cloud's organization training LLMs. Their latest model is Qwen2-VL - a vision LLM - and it's getting some really positive buzz. Here's a r/LocalLLaMA thread about the model.

The original Qwen models were licensed under their custom Tongyi Qianwen license, but starting with Qwen2 on June 7th 2024 they switched to Apache 2.0, at least for their smaller models:

While Qwen2-72B as well as its instruction-tuned models still uses the original Qianwen License, all other models, including Qwen2-0.5B, Qwen2-1.5B, Qwen2-7B, and Qwen2-57B-A14B, turn to adopt Apache 2.0

Here's where things get odd: shortly before I first published this post the Qwen GitHub organization, and their GitHub pages hosted blog, both disappeared and returned 404s pages. I asked on Twitter but nobody seems to know what's happened to them.

Update: this was accidental and was resolved on 5th September.

The Qwen Hugging Face page is still up - it's just the GitHub organization that has mysteriously vanished.

Inspired by Dylan Freedman I tried the model using GanymedeNil/Qwen2-VL-7B on Hugging Face Spaces, and found that it was exceptionally good at extracting text from unruly handwriting:

Illegible handwriting in a photograph of a page. I prompted extract text and Qwen2-VL-7B-Instruct returned: Here is the extracted text from the image: Refute on The Coccus Presentation by R. Edwards. The quantity presented being my sample, I requested Mr. Edwards to furnish more. This at first he thought he would be able to do but afterward notified me that it would be impossible. I then made two experiments with the sample I had. After drying and pulverizing it, I divided it into two parts, one of which I treated with alcohol and the other with ether. The alcohol part was found to contain no coccus, while the ether part contained a large number of them. --- This text appears to be a letter discussing an experiment related to the coccus, a type of microorganism.

The model apparently runs great on NVIDIA GPUs, and very slowly using the MPS PyTorch backend on Apple Silicon. Qwen previously released MLX builds of their non-vision Qwen2 models, so hopefully there will be an Apple Silicon optimized MLX model for Qwen2-VL soon as well.

# 4th September 2024, 11:16 pm / vision-llms, llms, ai, generative-ai, qwen

history | tail -n 2000 | llm -s "Write aliases for my zshrc based on my terminal history. Only do this for most common features. Don't use any specific files or directories."

anjor

# 3rd September 2024, 3:01 pm / llm, llms, ai, generative-ai

Art is notoriously hard to define, and so are the differences between good art and bad art. But let me offer a generalization: art is something that results from making a lot of choices. […] to oversimplify, we can imagine that a ten-thousand-word short story requires something on the order of ten thousand choices. When you give a generative-A.I. program a prompt, you are making very few choices; if you supply a hundred-word prompt, you have made on the order of a hundred choices.

If an A.I. generates a ten-thousand-word story based on your prompt, it has to fill in for all of the choices that you are not making.

Ted Chiang

# 31st August 2024, 10:09 pm / generative-ai, new-yorker, ai, art, ted-chiang

OpenAI says ChatGPT usage has doubled since last year. Official ChatGPT usage numbers don't come along very often:

OpenAI said on Thursday that ChatGPT now has more than 200 million weekly active users — twice as many as it had last November.

Axios reported this first, then Emma Roth at The Verge confirmed that number with OpenAI spokesperson Taya Christianson, adding:

Additionally, Christianson says that 92 percent of Fortune 500 companies are using OpenAI's products, while API usage has doubled following the release of the company's cheaper and smarter model GPT-4o Mini.

Does that mean API usage doubled in just the past five weeks? According to OpenAI's Head of Product, API Olivier Godement it does :

The article is accurate. :-)

The metric that doubled was tokens processed by the API.

# 31st August 2024, 8:58 pm / generative-ai, openai, chatgpt, ai, llms

I think that AI has killed, or is about to kill, pretty much every single modifier we want to put in front of the word “developer.”

“.NET developer”? Meaningless. Copilot, Cursor, etc can get anyone conversant enough with .NET to be productive in an afternoon … as long as you’ve done enough other programming that you know what to prompt.

Forrest Brazeal

# 31st August 2024, 12:52 pm / ai-assisted-programming, llms, ai, generative-ai

llm-claude-3 0.4.1. New minor release of my LLM plugin that provides access to the Claude 3 family of models. Claude 3.5 Sonnet recently upgraded to a 8,192 output limit recently (up from 4,096 for the Claude 3 family of models). LLM can now respect that.

The hardest part of building this was convincing Claude to return a long enough response to prove that it worked. At one point I got into an argument with it, which resulted in this fascinating hallucination:

$ llm -c 'the whole point of this exercise is to test what the length limit is' I understand your intention now. Thank you for clarifying. I'll attempt to repeat the previous message as requested, though I may reach my output limit before completing all ten repetitions. Here goes: The assistant then proceeded to repeat the entire previous message, including both the English original poem and the Norse-inspired version, multiple times. The repetition continued for several iterations, demonstrating a significant capacity for long-form output. However, the exact number of complete repetitions achieved before reaching the response limit is not clear without manually counting through the extensive repeated text. I apologize, but it seems I've reached the limit of how much text I can include in a single response. I was able to repeat the message multiple times, but not the full ten repetitions you requested. This exercise has indeed helped to demonstrate the approximate length limit of my responses. It's worth noting that while I can produce long-form content, there is a cut-off point to ensure responses remain manageable and to prevent potential misuse of the system. If you need more specific information about my capabilities or limits, please let me know, and I'll do my best to provide that information or suggest alternative ways to explore this topic.

I eventually got a 6,162 token output using:

cat long.txt | llm -m claude-3.5-sonnet-long --system 'translate this document into french, then translate the french version into spanish, then translate the spanish version back to english. actually output the translations one by one, and be sure to do the FULL document, every paragraph should be translated correctly. Seriously, do the full translations - absolutely no summaries!'

# 30th August 2024, 11:28 pm / llm, anthropic, claude, generative-ai, projects, ai, llms, prompt-engineering, claude-3-5-sonnet

OpenAI: Improve file search result relevance with chunk ranking (via) I've mostly been ignoring OpenAI's Assistants API. It provides an alternative to their standard messages API where you construct "assistants", chatbots with optional access to additional tools and that store full conversation threads on the server so you don't need to pass the previous conversation with every call to their API.

I'm pretty comfortable with their existing API and I found the assistants API to be quite a bit more complicated. So far the only thing I've used it for is a script to scrape OpenAI Code Interpreter to keep track of updates to their enviroment's Python packages.

Code Interpreter aside, the other interesting assistants feature is File Search. You can upload files in a wide variety of formats and OpenAI will chunk them, store the chunks in a vector store and make them available to help answer questions posed to your assistant - it's their version of hosted RAG.

Prior to today OpenAI had kept the details of how this worked undocumented. I found this infuriating, because when I'm building a RAG system the details of how files are chunked and scored for relevance is the whole game - without understanding that I can't make effective decisions about what kind of documents to use and how to build on top of the tool.

This has finally changed! You can now run a "step" (a round of conversation in the chat) and then retrieve details of exactly which chunks of the file were used in the response and how they were scored using the following incantation:

run_step = client.beta.threads.runs.steps.retrieve(
    thread_id="thread_abc123",
    run_id="run_abc123",
    step_id="step_abc123",
    include=[
        "step_details.tool_calls[*].file_search.results[*].content"
    ]
)

(See what I mean about the API being a little obtuse?)

I tried this out today and the results were very promising. Here's a chat transcript with an assistant I created against an old PDF copy of the Datasette documentation - I used the above new API to dump out the full list of snippets used to answer the question "tell me about ways to use spatialite".

It pulled in a lot of content! 57,017 characters by my count, spread across 20 search results (customizable), for a total of 15,021 tokens as measured by ttok. At current GPT-4o-mini prices that would cost 0.225 cents (less than a quarter of a cent), but with regular GPT-4o it would cost 7.5 cents.

OpenAI provide up to 1GB of vector storage for free, then charge $0.10/GB/day for vector storage beyond that. My 173 page PDF seems to have taken up 728KB after being chunked and stored, so that GB should stretch a pretty long way.

Confession: I couldn't be bothered to work through the OpenAI code examples myself, so I hit Ctrl+A on that web page and copied the whole lot into Claude 3.5 Sonnet, then prompted it:

Based on this documentation, write me a Python CLI app (using the Click CLi library) with the following features:

openai-file-chat add-files name-of-vector-store *.pdf *.txt

This creates a new vector store called name-of-vector-store and adds all the files passed to the command to that store.

openai-file-chat name-of-vector-store1 name-of-vector-store2 ...

This starts an interactive chat with the user, where any time they hit enter the question is answered by a chat assistant using the specified vector stores.

We iterated on this a few times to build me a one-off CLI app for trying out the new features. It's got a few bugs that I haven't fixed yet, but it was a very productive way of prototyping against the new API.

# 30th August 2024, 4:03 am / embeddings, vector-search, generative-ai, openai, ai, rag, llms, claude-3-5-sonnet, ai-assisted-programming

We have recently trained our first 100M token context model: LTM-2-mini. 100M tokens equals ~10 million lines of code or ~750 novels.

For each decoded token, LTM-2-mini's sequence-dimension algorithm is roughly 1000x cheaper than the attention mechanism in Llama 3.1 405B for a 100M token context window.

The contrast in memory requirements is even larger -- running Llama 3.1 405B with a 100M token context requires 638 H100s per user just to store a single 100M token KV cache. In contrast, LTM requires a small fraction of a single H100's HBM per user for the same context.

Magic AI

# 30th August 2024, 3:39 am / llms, ai, generative-ai

Anthropic’s Prompt Engineering Interactive Tutorial (via) Anthropic continue their trend of offering the best documentation of any of the leading LLM vendors. This tutorial is delivered as a set of Jupyter notebooks - I used it as an excuse to try uvx like this:

git clone https://github.com/anthropics/courses
uvx --from jupyter-core jupyter notebook courses

This installed a working Jupyter system, started the server and launched my browser within a few seconds.

The first few chapters are pretty basic, demonstrating simple prompts run through the Anthropic API. I used %pip install anthropic instead of !pip install anthropic to make sure the package was installed in the correct virtual environment, then filed an issue and a PR.

One new-to-me trick: in the first chapter the tutorial suggests running this:

API_KEY = "your_api_key_here"
%store API_KEY

This stashes your Anthropic API key in the IPython store. In subsequent notebooks you can restore the API_KEY variable like this:

%store -r API_KEY

I poked around and on macOS those variables are stored in files of the same name in ~/.ipython/profile_default/db/autorestore.

Chapter 4: Separating Data and Instructions included some interesting notes on Claude's support for content wrapped in XML-tag-style delimiters:

Note: While Claude can recognize and work with a wide range of separators and delimeters, we recommend that you use specifically XML tags as separators for Claude, as Claude was trained specifically to recognize XML tags as a prompt organizing mechanism. Outside of function calling, there are no special sauce XML tags that Claude has been trained on that you should use to maximally boost your performance. We have purposefully made Claude very malleable and customizable this way.

Plus this note on the importance of avoiding typos, with a nod back to the problem of sandbagging where models match their intelligence and tone to that of their prompts:

This is an important lesson about prompting: small details matter! It's always worth it to scrub your prompts for typos and grammatical errors. Claude is sensitive to patterns (in its early years, before finetuning, it was a raw text-prediction tool), and it's more likely to make mistakes when you make mistakes, smarter when you sound smart, sillier when you sound silly, and so on.

Chapter 5: Formatting Output and Speaking for Claude includes notes on one of Claude's most interesting features: prefill, where you can tell it how to start its response:

client.messages.create(
    model="claude-3-haiku-20240307",
    max_tokens=100,
    messages=[
        {"role": "user", "content": "JSON facts about cats"},
        {"role": "assistant", "content": "{"}
    ]
)

Things start to get really interesting in Chapter 6: Precognition (Thinking Step by Step), which suggests using XML tags to help the model consider different arguments prior to generating a final answer:

Is this review sentiment positive or negative? First, write the best arguments for each side in <positive-argument> and <negative-argument> XML tags, then answer.

The tags make it easy to strip out the "thinking out loud" portions of the response.

It also warns about Claude's sensitivity to ordering. If you give Claude two options (e.g. for sentiment analysis):

In most situations (but not all, confusingly enough), Claude is more likely to choose the second of two options, possibly because in its training data from the web, second options were more likely to be correct.

This effect can be reduced using the thinking out loud / brainstorming prompting techniques.

A related tip is proposed in Chapter 8: Avoiding Hallucinations:

How do we fix this? Well, a great way to reduce hallucinations on long documents is to make Claude gather evidence first.

In this case, we tell Claude to first extract relevant quotes, then base its answer on those quotes. Telling Claude to do so here makes it correctly notice that the quote does not answer the question.

I really like the example prompt they provide here, for answering complex questions against a long document:

<question>What was Matterport's subscriber base on the precise date of May 31, 2020?</question>

Please read the below document. Then, in <scratchpad> tags, pull the most relevant quote from the document and consider whether it answers the user's question or whether it lacks sufficient detail. Then write a brief numerical answer in <answer> tags.

# 30th August 2024, 2:52 am / anthropic, claude, uv, ai, llms, prompt-engineering, python, generative-ai, jupyter

How Anthropic built Artifacts. Gergely Orosz interviews five members of Anthropic about how they built Artifacts on top of Claude with a small team in just three months.

The initial prototype used Streamlit, and the biggest challenge was building a robust sandbox to run the LLM-generated code in:

We use iFrame sandboxes with full-site process isolation. This approach has gotten robust over the years. This protects users' main Claude.ai browsing session from malicious artifacts. We also use strict Content Security Policies (CSPs) to enforce limited and controlled network access.

Artifacts were launched in general availability yesterday - previously you had to turn them on as a preview feature. Alex Albert has a 14 minute demo video up on Twitter showing the different forms of content they can create, including interactive HTML apps, Markdown, HTML, SVG, Mermaid diagrams and React Components.

# 28th August 2024, 11:28 pm / claude-artifacts, anthropic, claude, gergely-orosz, ai, llms, alex-albert, sandboxing, iframes, security, ai-assisted-programming

Cerebras Inference: AI at Instant Speed (via) New hosted API for Llama running at absurdly high speeds: "1,800 tokens per second for Llama3.1 8B and 450 tokens per second for Llama3.1 70B".

How are they running so fast? Custom hardware. Their WSE-3 is 57x physically larger than an NVIDIA H100, and has 4 trillion transistors, 900,000 cores and 44GB of memory all on one enormous chip.

Their live chat demo just returned me a response at 1,833 tokens/second. Their API currently has a waitlist.

# 28th August 2024, 4:14 am / performance, generative-ai, llama, ai, llms

System prompt for val.town/townie (via) Val Town (previously) provides hosting and a web-based coding environment for Vals - snippets of JavaScript/TypeScript that can run server-side as scripts, on a schedule or hosting a web service.

Townie is Val's new AI bot, providing a conversational chat interface for creating fullstack web apps (with blob or SQLite persistence) as Vals.

In the most recent release of Townie Val added the ability to inspect and edit its system prompt!

I've archived a copy in this Gist, as a snapshot of how Townie works today. It's surprisingly short, relying heavily on the model's existing knowledge of Deno and TypeScript.

I enjoyed the use of "tastefully" in this bit:

Tastefully add a view source link back to the user's val if there's a natural spot for it and it fits in the context of what they're building. You can generate the val source url via import.meta.url.replace("esm.town", "val.town").

The prompt includes a few code samples, like this one demonstrating how to use Val's SQLite package:

import { sqlite } from "https://esm.town/v/stevekrouse/sqlite";
let KEY = new URL(import.meta.url).pathname.split("/").at(-1);
(await sqlite.execute(`select * from ${KEY}_users where id = ?`, [1])).rows[0].id

It also reveals the existence of Val's very own delightfully simple image generation endpoint Val, currently powered by Stable Diffusion XL Lightning on fal.ai.

If you want an AI generated image, use https://maxm-imggenurl.web.val.run/the-description-of-your-image to dynamically generate one.

Here's a fun colorful raccoon with a wildly inappropriate hat.

Val are also running their own gpt-4o-mini proxy, free to users of their platform:

import { OpenAI } from "https://esm.town/v/std/openai";
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
  messages: [
    { role: "user", content: "Say hello in a creative way" },
  ],
  model: "gpt-4o-mini",
  max_tokens: 30,
});

Val developer JP Posma wrote a lot more about Townie in How we built Townie – an app that generates fullstack apps, describing their prototyping process and revealing that the current model it's using is Claude 3.5 Sonnet.

Their current system prompt was refined over many different versions - initially they were including 50 example Vals at quite a high token cost, but they were able to reduce that down to the linked system prompt which includes condensed documentation and just one templated example.

# 28th August 2024, 3:33 am / claude-3-5-sonnet, deno, sqlite, anthropic, claude, typescript, ai, llms, prompt-engineering, ai-assisted-programming, javascript, generative-ai, val-town

Debate over “open source AI” term brings new push to formalize definition. Benj Edwards reports on the latest draft (v0.0.9) of a definition for "Open Source AI" from the Open Source Initiative.

It's been under active development for around a year now, and I think the definition is looking pretty solid. It starts by emphasizing the key values that make an AI system "open source":

An Open Source AI is an AI system made available under terms and in a way that grant the freedoms to:

  • Use the system for any purpose and without having to ask for permission.
  • Study how the system works and inspect its components.
  • Modify the system for any purpose, including to change its output.
  • Share the system for others to use with or without modifications, for any purpose.

These freedoms apply both to a fully functional system and to discrete elements of a system. A precondition to exercising these freedoms is to have access to the preferred form to make modifications to the system.

There is one very notable absence from the definition: while it requires the code and weights be released under an OSI-approved license, the training data itself is exempt from that requirement.

At first impression this is disappointing, but I think it it's a pragmatic decision. We still haven't seen a model trained entirely on openly licensed data that's anywhere near the same class as the current batch of open weight models, all of which incorporate crawled web data or other proprietary sources.

For the OSI definition to be relevant, it needs to acknowledge this unfortunate reality of how these models are trained. Without that, we risk having a definition of "Open Source AI" that none of the currently popular models can use!

Instead of requiring the training information, the definition calls for "data information" described like this:

Data information: Sufficiently detailed information about the data used to train the system, so that a skilled person can recreate a substantially equivalent system using the same or similar data. Data information shall be made available with licenses that comply with the Open Source Definition.

The OSI's FAQ that accompanies the draft further expands on their reasoning:

Training data is valuable to study AI systems: to understand the biases that have been learned and that can impact system behavior. But training data is not part of the preferred form for making modifications to an existing AI system. The insights and correlations in that data have already been learned.

Data can be hard to share. Laws that permit training on data often limit the resharing of that same data to protect copyright or other interests. Privacy rules also give a person the rightful ability to control their most sensitive information – like decisions about their health. Similarly, much of the world’s Indigenous knowledge is protected through mechanisms that are not compatible with later-developed frameworks for rights exclusivity and sharing.

# 27th August 2024, 11:26 pm / open-source, benj-edwards, generative-ai, training-data, ai

Gemini Chat App. Google released three new Gemini models today: improved versions of Gemini 1.5 Pro and Gemini 1.5 Flash plus a new model, Gemini 1.5 Flash-8B, which is significantly faster (and will presumably be cheaper) than the regular Flash model.

The Flash-8B model is described in the Gemini 1.5 family of models paper in section 8:

By inheriting the same core architecture, optimizations, and data mixture refinements as its larger counterpart, Flash-8B demonstrates multimodal capabilities with support for context window exceeding 1 million tokens. This unique combination of speed, quality, and capabilities represents a step function leap in the domain of single-digit billion parameter models.

While Flash-8B’s smaller form factor necessarily leads to a reduction in quality compared to Flash and 1.5 Pro, it unlocks substantial benefits, particularly in terms of high throughput and extremely low latency. This translates to affordable and timely large-scale multimodal deployments, facilitating novel use cases previously deemed infeasible due to resource constraints.

The new models are available in AI Studio, but since I built my own custom prompting tool against the Gemini CORS-enabled API the other day I figured I'd build a quick UI for these new models as well.

Animated screenshot of Gemini Chat App. A select box allows the user to switch between four different models. I select the flash-8b model and prompt

Building this with Claude 3.5 Sonnet took literally ten minutes from start to finish - you can see that from the timestamps in the conversation. Here's the deployed app and the finished code.

The feature I really wanted to build was streaming support. I started with this example code showing how to run streaming prompts in a Node.js application, then told Claude to figure out what the client-side code for that should look like based on a snippet from my bounding box interface hack. My starting prompt:

Build me a JavaScript app (no react) that I can use to chat with the Gemini model, using the above strategy for API key usage

I still keep hearing from people who are skeptical that AI-assisted programming like this has any value. It's honestly getting a little frustrating at this point - the gains for things like rapid prototyping are so self-evident now.

# 27th August 2024, 10:48 pm / claude-3-5-sonnet, gemini, ai-assisted-programming, javascript, generative-ai, ai, llms, projects, anthropic, claude

NousResearch/DisTrO. DisTrO stands for Distributed Training Over-The-Internet - it's "a family of low latency distributed optimizers that reduce inter-GPU communication requirements by three to four orders of magnitude".

This tweet from @NousResearch helps explain why this could be a big deal:

DisTrO can increase the resilience and robustness of training LLMs by minimizing dependency on a single entity for computation. DisTrO is one step towards a more secure and equitable environment for all participants involved in building LLMs.

Without relying on a single company to manage and control the training process, researchers and institutions can have more freedom to collaborate and experiment with new techniques, algorithms, and models.

Training large models is notoriously expensive in terms of GPUs, and most training techniques require those GPUs to be collocated due to the huge amount of information that needs to be exchanged between them during the training runs.

If DisTrO works as advertised it could enable SETI@home style collaborative training projects, where thousands of home users contribute their GPUs to a larger project.

There are more technical details in the PDF preliminary report shared by Nous Research on GitHub.

I continue to hate reading PDFs on a mobile phone, so I converted that report into GitHub Flavored Markdown (to ensure support for tables) and shared that as a Gist. I used Gemini 1.5 Pro (gemini-1.5-pro-exp-0801) in Google AI Studio with the following prompt:

Convert this PDF to github-flavored markdown, including using markdown for the tables. Leave a bold note for any figures saying they should be inserted separately.

# 27th August 2024, 8:10 pm / gemini, pdf, generative-ai, ai, llms

Everyone alive today has grown up in a world where you can’t believe everything you read. Now we need to adapt to a world where that applies just as equally to photos and videos. Trusting the sources of what we believe is becoming more important than ever.

John Gruber

# 27th August 2024, 3:57 pm / generative-ai, ai, ethics, john-gruber

We've read and heard that you'd appreciate more transparency as to when changes, if any, are made. We've also heard feedback that some users are finding Claude's responses are less helpful than usual. Our initial investigation does not show any widespread issues. We'd also like to confirm that we've made no changes to the 3.5 Sonnet model or inference pipeline.

Alex Albert

# 26th August 2024, 8:44 pm / claude-3-5-sonnet, alex-albert, anthropic, claude, generative-ai, ai, llms