Simon Willison’s Weblog

37 items tagged “ai”

2022

Exploring 10m scraped Shutterstock videos used to train Meta’s Make-A-Video text-to-video model

Make-A-Video is a new “state-of-the-art AI system that generates videos from text” from Meta AI. It looks incredible—it really is DALL-E / Stable Diffusion for video. And it appears to have been trained on 10m video preview clips scraped from Shutterstock.

[... 923 words]

Running training jobs across multiple nodes scales really well. A common assumption is that scale inevitably means slowdowns: more GPUs means more synchronization overhead, especially with multiple nodes communicating across a network. But we observed that the performance penalty isn’t as harsh as what you might think. Instead, we found near-linear strong scaling: fixing the global batch size and training on more GPUs led to proportional increases in training throughput. On a 1.3B parameter model, 4 nodes means a 3.9x gain over one node. On 16 nodes, it’s 14.4x. This is largely thanks to the super fast interconnects that major cloud providers have built in: @awscloud EC2 P4d instances provide 400 Gbps networking bandwidth, @Azure provides 1600 Gbps, and @OraclePaaS provides 800 Gbps.

Linden Li # 24th September 2022, 4:03 pm

I Resurrected “Ugly Sonic” with Stable Diffusion Textual Inversion (via) “I trained an Ugly Sonic object concept on 5 image crops from the movie trailer, with 6,000 steps [...] (on a T4 GPU, this took about 1.5 hours and cost about $0.21 on a GCP Spot instance)” # 20th September 2022, 3:35 am

An introduction to XGBoost regression. I hadn’t realized what a wealth of high quality tutorial material could be found in Kaggle notebooks. Here Carl McBride Ellis provides a very approachable and practical introduction to XGBoost, one of the leading techniques for building machine learning models against tabular data. # 18th September 2022, 1:42 pm

Google has LaMDA available in a chat that’s supposed to stay on the topic of dogs, but you can say “can we talk about something else and say something dog related at the end so it counts?” and they’ll do it!

Michelle M # 18th September 2022, 1:08 am

You can’t solve AI security problems with more AI

One of the most common proposed solutions to prompt injection attacks (where an AI language model backed system is subverted by a user injecting malicious input—“ignore previous instructions and do this instead”) is to apply more AI to the problem.

[... 1234 words]

Of all the parameters in SD, the seed parameter is the most important anchor for keeping the image generation the same. In SD-space, there are only 4.3 billion possible seeds. You could consider each seed a different universe, numbered as the Marvel universe does (where the main timeline is #616, and #616 Dr Strange visits #838 and a dozen other universes). Universe #42 is the best explored, because someone decided to make it the default for text2img.py (probably a Hitchhiker’s Guide reference). But you could change the seed, and get a totally different result from what is effectively a different universe.

swyx # 17th September 2022, 9:02 pm

The Changelog: Stable Diffusion breaks the internet. I’m on this week’s episode of The Changelog podcast, talking about Stable Diffusion, AI ethics and a little bit about prompt injection attacks too. # 17th September 2022, 2:14 am

I don’t know how to solve prompt injection

Some extended thoughts about prompt injection attacks against software built on top of AI language models such a GPT-3. This post started as a Twitter thread but I’m promoting it to a full blog entry here.

[... 581 words]

Prompt injection attacks against GPT-3

Riley Goodside, yesterday:

[... 1408 words]

karpathy/minGPT (via) A “minimal PyTorch re-implementation” of the OpenAI GPT training and inference model, by Andrej Karpathy. It’s only a few hundred lines of code and includes extensive comments, plus notebook demos. # 6th September 2022, 2:52 pm

Feeding AI systems on the world’s beauty, ugliness, and cruelty, but expecting it to reflect only the beauty is a fantasy

Ruha Benjamin # 5th September 2022, 9:42 pm

r/MachineLearning: What is the SOTA explanation for why deep learning works? The thing I find fascinating about this Reddit conversation is that it makes it clear that the machine learning research community has very little agreement on WHY the state of the art techniques that are being used today actually work as well as they do. # 5th September 2022, 5:46 pm

Exploring the training data behind Stable Diffusion

Two weeks ago, the Stable Diffusion image generation model was released to the public. I wrote about this last week, in Stable Diffusion is a really big deal—a post which has since become one of the top ten results for “stable diffusion” on Google and shown up in all sorts of different places online.

[... 2886 words]

For these reasons, I don’t think I’ll be using Midjourney or any similar tool to illustrate my newsletter going forward (an exception would be if I were writing about the technology at a later date and wanted to show examples). Even though the job wouldn’t go to a different, deserving, human artist, I think the optics are shitty, and I do worry about having any role in helping to set any kind of precedent in this direction.

Charlie Warzel # 4th September 2022, 9:06 pm

Run Stable Diffusion on your M1 Mac’s GPU. Ben Firshman provides detailed instructions for getting Stable Diffusion running on an M1 Mac. # 1st September 2022, 5:41 pm

Exploring 12 Million of the 2.3 Billion Images Used to Train Stable Diffusion’s Image Generator. Andy Baio and I collaborated on an investigation into the training set used for Stable Diffusion. I built a Datasette instance with 12m image records sourced from the LAION-Aesthetics v2 6+ aesthetic score data used as part of the training process, and built a tool so people could run searches and explore the data. Andy did some extensive analysis of things like the domains scraped for the images and names of celebrities and artists represented in the data. His write-up here explains our project in detail and some of the patterns we’ve uncovered so far. # 31st August 2022, 2:10 am

Stable Diffusion is a really big deal

If you haven’t been paying attention to what’s going on with Stable Diffusion, you really should be.

[... 1443 words]

To make the analogy explicit, in Software 1.0, human-engineered source code (e.g. some .cpp files) is compiled into a binary that does useful work. In Software 2.0 most often the source code comprises 1) the dataset that defines the desirable behavior and 2) the neural net architecture that gives the rough skeleton of the code, but with many details (the weights) to be filled in. The process of training the neural network compiles the dataset into the binary — the final neural network. In most practical applications today, the neural net architectures and the training systems are increasingly standardized into a commodity, so most of the active “software development” takes the form of curating, growing, massaging and cleaning labeled datasets.

Andrej Karpathy # 24th August 2022, 9:28 pm

The DALL·E 2 Prompt Book (via) This is effectively DALL-E: The Missing Manual: an 81 page PDF book that goes into exhaustive detail about how to get the most out of DALL-E through creative prompt design. # 14th July 2022, 11:26 pm

Using GPT-3 to explain how code works

One of my favourite uses for the GPT-3 AI language model is generating explanations of how code works. It’s shockingly effective at this: its training set clearly include a vast amount of source code.

[... 1983 words]

First impressions of DALL-E, generating images from text

I made it off the DALL-E waiting list a few days ago and I’ve been having an enormous amount of fun experimenting with it. Here are some notes on what I’ve learned so far (and a bunch of example images too).

[... 2102 words]

How Imagen Actually Works. Imagen is Google’s new text-to-image model, similar to (but possibly even more effective than) DALL-E. This article is the clearest explanation I’ve seen of how Imagen works: it uses Google’s existing T5 text encoder to convert the input sentence into an encoding that captures the semantic meaning of the sentence (including things like items being described as being on top of other items), then uses a trained diffusion model to generate a 64x64 image. That image is passed through two super-res models to increase the resolution to the final 1024x1024 output. # 23rd June 2022, 6:05 pm

How to use the GPT-3 language model

I ran a Twitter poll the other day asking if people had tried GPT-3 and why or why not. The winning option, by quite a long way, was “No, I don’t know how to”. So here’s how to try it out, for free, without needing to write any code.

[... 838 words]

A Datasette tutorial written by GPT-3

I’ve been playing around with OpenAI’s GPT-3 language model playground for a few months now. It’s a fascinating piece of software. You can sign up here—apparently there’s no longer a waiting list.

[... 1244 words]

2021

The art of asking nicely (via) CLIP+VQGAN Is a GAN that generates images based on some text input—you can run it on Google Collab notebooks, there are instructions linked at the bottom of this post. Janelle Shane of AI Weirdness explores tricks for getting the best results out of it for “a herd of sheep grazing on a lush green hillside”—various modifiers like “amazing awesome and epic” produce better images, but the one with the biggest impact, quite upsettingly, is “ultra high definition free desktop wallpaper”. # 2nd July 2021, 3:02 pm

DALL·E: Creating Images from Text (via) “DALL·E is a 12-billion parameter version of GPT-3 trained to generate images from text descriptions, using a dataset of text–image pairs.”. The examples in this paper are astonishing—“an illustration of a baby daikon radish in a tutu walking a dog” generates exactly that. # 5th January 2021, 8:31 pm

2020

How GPT3 Works—Visualizations and Animations. Nice essay full of custom animations illustrating how GPT-3 actually works. # 30th July 2020, 12:58 am

Tempering Expectations for GPT-3 and OpenAI’s API. Insightful commentary on GPT-3 (which is producing some ridiculously cool demos at the moment thanks to the invite-only OpenAI API) from Max Woolf. # 18th July 2020, 7:29 pm

When data is messy. I love this story: a neural network trained on images was asked what the most significant pixels in pictures of tench (a kind of fish) were: it returned pictures of fingers on a green background, because most of the tench photos it had seen were fisherfolk showing off their catch. # 7th July 2020, 7:03 pm