54 items tagged “redis”
2024
From where I left. Four and a half years after he left the project, Redis creator Salvatore Sanfilippo is returning to work on Redis.
Hacking randomly was cool but, in the long run, my feeling was that I was lacking a real purpose, and every day I started to feel a bigger urgency to be part of the tech world again. At the same time, I saw the Redis community fragmenting, something that was a bit concerning to me, even as an outsider.
I'm personally still upset at the license change, but Salvatore sees it as necessary to support the commercial business model for Redis Labs. It feels to me like a betrayal of the volunteer efforts by previous contributors. I posted about that on Hacker News and Salvatore replied:
I can understand that, but the thing about the BSD license is that such value never gets lost. People are able to fork, and after a fork for the original project to still lead will be require to put something more on the table.
Salvatore's first new project is an exploration of adding vector sets to Redis. The vector similarity API he previews in this post reminds me of why I fell in love with Redis in the first place - it's clean, simple and feels obviously right to me.
VSIM top_1000_movies_imdb ELE "The Matrix" WITHSCORES
1) "The Matrix"
2) "0.9999999403953552"
3) "Ex Machina"
4) "0.8680362105369568"
...
Themes from DjangoCon US 2024
I just arrived home from a trip to Durham, North Carolina for DjangoCon US 2024. I’ve already written about my talk where I announced a new plugin system for Django; here are my notes on some of the other themes that resonated with me during the conference.
[... 1,470 words]redka (via) Anton Zhiyanov’s new project to build a subset of Redis (including protocol support) using Go and SQLite. Also works as a Go library.
The guts of the SQL implementation are in the internal/sqlx folder.
Redis Adopts Dual Source-Available Licensing (via) Well this sucks: after fifteen years (and contributions from more than 700 people), Redis is dropping the 3-clause BSD license going forward, instead being “dual-licensed under the Redis Source Available License (RSALv2) and Server Side Public License (SSPLv1)” from Redis 7.4 onwards.
2023
lmdb.tcl —the first version of Redis, written in TCL (via) Really neat piece of computing history here—the very first version of what later became Redis, written as a 319 line TCL stript for LLOOGG, Salvatore Sanfilippo’s old analytics startup.
2022
Scaling Mastodon: The Compendium (via) Hazel Weakly’s collection of notes on scaling Mastodon, covering PostgreSQL, Sidekiq, Redis, object storage and more.
Dragonfly: A modern replacement for Redis and Memcached (via) I was initially pretty skeptical of the tagline: does Redis really need a “modern” replacement? But the Background section of the README makes this look like a genuinely interesting project. It re-imagines Redis to have its keyspace partitioned across multiple threads, and uses the VLL lock manager described in a 2014 paper to “compose atomic multi-key operations without using mutexes or spinlocks”. The initial benchmarks show up to a 25x increase in throughput compared to Redis. It’s written in C++.
A tiny CI system (via) Christian Ştefănescu shares a recipe for building a tiny self-hosted CI system using Git and Redis. A post-receive hook runs when a commit is pushed to the repo and uses redis-cli to push jobs to a list. Then a separate bash script runs a loop with a blocking “redis-cli blpop jobs” operation which waits for new jobs and then executes the CI job as a shell script.
2021
Last Mile Redis (via) Fly.io article about running a local redis cache in each of their geographic regions—“Cache data overlaps a lot less than you assume it will. For the most part, people in Singapore will rely on a different subset of data than people in Amsterdam or São Paulo or New Jersey.” But then they note that Redis has the ability to act as both a replica of a primary AND a writable server at the same time (“replica-read-only no”), which actually makes sense for a cache—it lets you cache local data but send out cluster-wide cache purges if necessary.
RabbitMQ Streams Overview. New in RabbitMQ 3.9: streams are a persisted, replicated append-only log with non-destructive consuming semantics. Sounds like it fits the same hole as Kafka and Redis Streams, an extremely useful pattern.
2019
huey. Charles Leifer’s “little task queue for Python”. Similar to Celery, but it’s designed to work with Redis, SQLite or in the parent process using background greenlets. Worth checking out for the really neat design. The project is new to me, but it’s been under active development since 2011 and has a very healthy looking rate of releases.
This paper introduces Mesh, a plug-in replacement for malloc that, for the first time, eliminates fragmentation in unmodified C/C++ applications. Mesh combines novel randomized algorithms with widely-supported virtual memory operations to provably reduce fragmentation, breaking the classical Robson bounds with high probability. Mesh generally matches the runtime performance of state-of-the-art memory allocators while reducing memory consumption; in particular, it reduces the memory of consumption of Firefox by 16% and Redis by 39%.
2018
Introduction to Redis Streams. Redis 5.0 is out, introducing the first new Redis data type in several years: streams, a Kafka-like mechanism for implementing a replayable event stream that can be read by many different subscribers.
Scaling a High-traffic Rate Limiting Stack With Redis Cluster. Brandur Leach describes the simple, elegant and performant design of Redis Cluster, and talks about how Stripe used it to scaled their rate-limiting from one to ten nodes.
Code is like a poem; it's not just something we write to reach some practical result. Sometimes people that are far from the Redis philosophy suggest using other code written by other authors (frequently in other languages) in order to implement something Redis currently lacks. But to us this is like if Shakespeare decided to end Enrico IV using the Paradiso from the Divina Commedia. Is using any external code a bad idea? Not at all. Like in "One Thousand and One Nights" smaller self contained stories are embedded in a bigger story, we'll be happy to use beautiful self contained libraries when needed. At the same time, when writing the Redis story we're trying to write smaller stories that will fit in to other code.
2017
For Redis 4.2 I'm moving Disque as a Redis module. To do this, Redis modules are getting a fully featured Cluster API. This means that it will be possible, for instance, to write a Redis module that orchestrates N Redis masters, using Raft or any other consensus algorithm, as a single distributed system. This will allow to also model strong guarantees easily.
Redis Streams and the Unified Log. In which Brandur Leach explores the new Kafka-style streams functionality coming to Redis 4.0, and shows an example of a robust at-least once processing architecture built on a combination of Redis streams and PostgreSQL transactions. I really like the pattern of writing log records to a staging table in PostgreSQL first in order to bundle them up in the same transaction as the originating state change, then have a separate process read them from that table and publish them to Redis.
Redis streams aren’t exciting for their innovativeness, but rather than they bring building a unified log architecture within reach of a small and/or inexpensive app. Kafka is infamously difficult to configure and get running, and is expensive to operate once you do. [...] Redis on the other hand is probably already in your stack.
Secondary indexing with Redis. I haven’t seen this section of the official Redis documentation before, and it’s absolutely fantastic—well worth reading the whole thing. It talks through various ways in which you can set up indexes in Redis, mainly by leaning on sorted sets—which it turns out will binary lexicographically sort items with the same score. This makes it easy to implement autocomplete with Redis—but if you use them creatively you can implement subject/predicate/object graph searches or even N-dimensional range queries as well.
walrus. Fascinating collection of Python utilities for working with Redis, by Charles Leifer. There are a ton of interesting ideas in here. It starts with Python object wrappers for Redis so you can interact with lists, sets, sorted sets and Redis hashes using Python-like objects. Then it gets really interesting: walrus ships with implementations of autocomplete, rate limiting, a graph engine (using a sorted set hexastore) and an ORM-style models mechanism which manages secondary indexes and even implements basic full-text search.
Scaling the GitLab database. Lots of interesting details on how GitLab have worked to scale their PostgreSQL setup. They’ve avoided sharding so far, instead opting for database pooling with pgbouncer and read-only replicas using hot standbys. I like the way they deal with replica lag—they store the current WAL position in a redis key for the user every time there’s a write, then use pg_last_xlog_replay_location() on the various replicas to check and see if they have caught up next time the user makes a request that needs to read some data.
Streams: a new general purpose data structure in Redis. Exciting new Redis feature inspired by Kafka: redis streams, which allow you to construct an efficient, in-memory list of messages (similar to a Kafka log) which clients can read sections of or block against and await real-time delivery of new messages. As expected from Salvatore the API design is clean, obvious and covers a wide range of exciting use-cases. Planned for release with Redis 4 by the end of the year!
2012
Can you recommend a few video lectures on web application design with Redis?
We have a collection of 27 videos of conference talks that cover Redis on Lanyrd, gathered by our community: Redis Videos | Lanyrd
[... 74 words]2011
How we use Redis at Bump. A couple of neat tricks I hadn’t seen before: using Redis to aggregate log files from multiple servers (they all push in to a Redis queue, then one process pulls from the queue and writes to disk), and using Redis blocking queues for RPC by specifying a different temporary queue to return the result.
We can deploy new versions of our software, make database schema changes, or even rotate our primary database server, all without failing to respond to a single request. We can accomplish this because we gave ourselves the ability suspend our traffic, which gives us a window of a few seconds to make some changes before letting the requests through. To make this happen, we built a custom HTTP server and application dispatching infrastructure around Python’s Tornado and Redis.
— Dan Manges, Braintree
2010
HotQueue. A super-simple Python work queue using Redis. The API is neat, and makes clever use of generators for blocking consumption of queue items.
What are the advantages and disadvantages of using MongoDB vs CouchDB vs Cassandra vs Redis?
I see Redis as a different category from the other three—kind of like you wouldn’t say “what are the advantages of MySQL v.s. Memcached”. Redis makes an excellent complement to pretty much any other persistent storage mechanism. I expanded on this here: http://simonwillison.net/2009/Oc...
[... 67 words]Will Redis support per-database persistence configuration?
I don’t know if that’s on the roadmap (you’d need to ask antirez on the mailing list or Twitter), but it should be easy enough to run multiple Redis instances with different settings—especially on a multi core machine.
[... 52 words]How we deploy new features. GitHub are experimenting with using Redis for configuration management. I’ve been thinking about this recently too—managing feature flags feels like an ideal use-case for Redis, since it lets you read multiple values on every page access without adding a bunch of extra read traffic on your regular database.