Simon Willison’s Weblog

Subscribe
Atom feed for coding-agents

84 posts tagged “coding-agents”

Systems where an LLM writes code which is then compiled, executed, tested or otherwise exercised by tools in a loop.

2025

Introducing SWE-1.5: Our Fast Agent Model (via) Here's the second fast coding model released by a coding agent IDE in the same day - the first was Composer-1 by Cursor. This time it's Windsurf releasing SWE-1.5:

Today we’re releasing SWE-1.5, the latest in our family of models optimized for software engineering. It is a frontier-size model with hundreds of billions of parameters that achieves near-SOTA coding performance. It also sets a new standard for speed: we partnered with Cerebras to serve it at up to 950 tok/s – 6x faster than Haiku 4.5 and 13x faster than Sonnet 4.5.

Like Composer-1 it's only available via their editor, no separate API yet. Also like Composer-1 they don't appear willing to share details of the "leading open-source base model" they based their new model on.

I asked it to generate an SVG of a pelican riding a bicycle and got this:

Bicycle has a red upside down Y shaped frame, pelican is a bit dumpy, it does at least have a long sharp beak.

This one felt really fast. Partnering with Cerebras for inference is a very smart move.

They share a lot of details about their training process in the post:

SWE-1.5 is trained on our state-of-the-art cluster of thousands of GB200 NVL72 chips. We believe SWE-1.5 may be the first public production model trained on the new GB200 generation. [...]

Our RL rollouts require high-fidelity environments with code execution and even web browsing. To achieve this, we leveraged our VM hypervisor otterlink that  allows us to scale Devin to tens of thousands of concurrent machines (learn more about blockdiff). This enabled us to smoothly support very high concurrency and ensure the training environment is aligned with our Devin production environments.

That's another similarity to Cursor's Composer-1! Cursor talked about how they ran "hundreds of thousands of concurrent sandboxed coding environments in the cloud" in their description of their RL training as well.

This is a notable trend: if you want to build a really great agentic coding tool there's clearly a lot to be said for using reinforcement learning to fine-tune a model against your own custom set of tools using large numbers of sandboxed simulated coding environments as part of that process.

Update: I think it's built on GLM.

# 29th October 2025, 11:59 pm / ai, generative-ai, llms, ai-assisted-programming, pelican-riding-a-bicycle, llm-release, coding-agents

Composer: Building a fast frontier model with RL (via) Cursor released Cursor 2.0 today, with a refreshed UI focused on agentic coding (and running agents in parallel) and a new model that's unique to Cursor called Composer 1.

As far as I can tell there's no way to call the model directly via an API, so I fired up "Ask" mode in Cursor's chat side panel and asked it to "Generate an SVG of a pelican riding a bicycle":

Screenshot of Cursor 2 - In the chat panel I have asked the question and it spat out a bunch of SVG.

Here's the result:

The bicycle is levitating against a blue sky. The pelican looks a little bit more like a baby chicken but does at least have a long beak.

The notable thing about Composer-1 is that it is designed to be fast. The pelican certainly came back quickly, and in their announcement they describe it as being "4x faster than similarly intelligent models".

It's interesting to see Cursor investing resources in training their own code-specific model - similar to GPT-5-Codex or Qwen3-Coder. From their post:

Composer is a mixture-of-experts (MoE) language model supporting long-context generation and understanding. It is specialized for software engineering through reinforcement learning (RL) in a diverse range of development environments. [...]

Efficient training of large MoE models requires significant investment into building infrastructure and systems research. We built custom training infrastructure leveraging PyTorch and Ray to power asynchronous reinforcement learning at scale. We natively train our models at low precision by combining our MXFP8 MoE kernels with expert parallelism and hybrid sharded data parallelism, allowing us to scale training to thousands of NVIDIA GPUs with minimal communication cost. [...]

During RL, we want our model to be able to call any tool in the Cursor Agent harness. These tools allow editing code, using semantic search, grepping strings, and running terminal commands. At our scale, teaching the model to effectively call these tools requires running hundreds of thousands of concurrent sandboxed coding environments in the cloud.

One detail that's notably absent from their description: did they train the model from scratch, or did they start with an existing open-weights model such as something from Qwen or GLM?

Cursor researcher Sasha Rush has been answering questions on Hacker News, but has so far been evasive in answering questions about the base model. When directly asked "is Composer a fine tune of an existing open source base model?" they replied:

Our primary focus is on RL post-training. We think that is the best way to get the model to be a strong interactive agent.

Sasha did confirm that rumors of an earlier Cursor preview model, Cheetah, being based on a model by xAI's Grok were "Straight up untrue."

# 29th October 2025, 8:45 pm / ai, generative-ai, llms, ai-assisted-programming, pelican-riding-a-bicycle, llm-release, coding-agents, cursor, parallel-agents

Someone on Hacker News asked for tips on setting up a codebase to be more productive with AI coding tools. Here's my reply:

  • Good automated tests which the coding agent can run. I love pytest for this - one of my projects has 1500 tests and Claude Code is really good at selectively executing just tests relevant to the change it is making, and then running the whole suite at the end.
  • Give them the ability to interactively test the code they are writing too. Notes on how to start a development server (for web projects) are useful, then you can have them use Playwright or curl to try things out.
  • I'm having great results from maintaining a GitHub issues collection for projects and pasting URLs to issues directly into Claude Code.
  • I actually don't think documentation is too important: LLMs can read the code a lot faster than you to figure out how to use it. I have comprehensive documentation across all of my projects but I don't think it's that helpful for the coding agents, though they are good at helping me spot if it needs updating.
  • Linters, type checkers, auto-formatters - give coding agents helpful tools to run and they'll use them.

For the most part anything that makes a codebase easier for humans to maintain turns out to help agents as well.

Update: Thought of another one: detailed error messages! If a manual or automated test fails the more information you can return back to the model the better, and stuffing extra data in the error message or assertion is a very inexpensive way to do that.

# 25th October 2025, 6:42 pm / coding-agents, ai-assisted-programming, pytest, hacker-news, generative-ai, ai, llms

If you have an AGENTS.md file, you can source it in your CLAUDE.md using @AGENTS.md to maintain a single source of truth.

Claude Docs, with the official answer to standardizing on AGENTS.md

# 25th October 2025, 4:57 am / coding-agents, anthropic, claude, claude-code, generative-ai, ai, llms

A lot of people say AI will make us all "managers" or "editors"...but I think this is a dangerously incomplete view!

Personally, I'm trying to code like a surgeon.

A surgeon isn't a manager, they do the actual work! But their skills and time are highly leveraged with a support team that handles prep, secondary tasks, admin. The surgeon focuses on the important stuff they are uniquely good at. [...]

It turns out there are a LOT of secondary tasks which AI agents are now good enough to help out with. Some things I'm finding useful to hand off these days:

  • Before attempting a big task, write a guide to relevant areas of the codebase
  • Spike out an attempt at a big change. Often I won't use the result but I'll review it as a sketch of where to go
  • Fix typescript errors or bugs which have a clear specification
  • Write documentation about what I'm building

I often find it useful to run these secondary tasks async in the background -- while I'm eating lunch, or even literally overnight!

When I sit down for a work session, I want to feel like a surgeon walking into a prepped operating room. Everything is ready for me to do what I'm good at.

Geoffrey Litt, channeling The Mythical Man-Month

# 24th October 2025, 2:07 pm / parallel-agents, coding-agents, geoffrey-litt, ai-assisted-programming, generative-ai, ai, llms

Video: Building a tool to copy-paste share terminal sessions using Claude Code for web

Visit Video: Building a tool to copy-paste share terminal sessions using Claude Code for web

This afternoon I was manually converting a terminal session into a shared HTML file for the umpteenth time when I decided to reduce the friction by building a custom tool for it—and on the spur of the moment I fired up Descript to record the process. The result is this new 11 minute YouTube video showing my workflow for vibe-coding simple tools from start to finish.

[... 1,338 words]

Living dangerously with Claude

Visit Living dangerously with Claude

I gave a talk last night at Claude Code Anonymous in San Francisco, the unofficial meetup for coding agent enthusiasts. I decided to talk about a dichotomy I’ve been struggling with recently. On the one hand I’m getting enormous value from running coding agents with as few restrictions as possible. On the other hand I’m deeply concerned by the risks that accompany that freedom.

[... 2,208 words]

Claude Code stores full logs of your sessions as newline-delimited JSON in ~/.claude/projects/encoded-directory/*.jsonl on your machine. I currently have 379MB of these!

Here's an example jsonl file which I extracted from my Deepseek-OCR on NVIDIA Spark project. I have a little vibe-coded tool for converting those into Markdown which produces results like this.

Unfortunately Claude Code has a nasty default behavior of deleting these after 30 days! You can't disable this entirely, but you can at least delay it for 274 years by adding this to your ~/.claude/settings.json file:

{
  "cleanupPeriodDays": 99999
}

Claude Code's settings are documented here.

# 22nd October 2025, 12:45 am / coding-agents, anthropic, claude-code, generative-ai, ai, llms

Claude Code for web—a new asynchronous coding agent from Anthropic

Visit Claude Code for web - a new asynchronous coding agent from Anthropic

Anthropic launched Claude Code for web this morning. It’s an asynchronous coding agent—their answer to OpenAI’s Codex Cloud and Google’s Jules, and has a very similar shape. I had preview access over the weekend and I’ve already seen some very promising results from it.

[... 1,434 words]

Getting DeepSeek-OCR working on an NVIDIA Spark via brute force using Claude Code

Visit Getting DeepSeek-OCR working on an NVIDIA Spark via brute force using Claude Code

DeepSeek released a new model yesterday: DeepSeek-OCR, a 6.6GB model fine-tuned specifically for OCR. They released it as model weights that run using PyTorch and CUDA. I got it running on the NVIDIA Spark by having Claude Code effectively brute force the challenge of getting it working on that particular hardware.

[... 1,971 words]

Andrej Karpathy — AGI is still a decade away (via) Extremely high signal 2 hour 25 minute (!) conversation between Andrej Karpathy and Dwarkesh Patel.

It starts with Andrej's claim that "the year of agents" is actually more likely to take a decade. Seeing as I accepted 2025 as the year of agents just yesterday this instantly caught my attention!

It turns out Andrej is using a different definition of agents to the one that I prefer - emphasis mine:

When you’re talking about an agent, or what the labs have in mind and maybe what I have in mind as well, you should think of it almost like an employee or an intern that you would hire to work with you. For example, you work with some employees here. When would you prefer to have an agent like Claude or Codex do that work?

Currently, of course they can’t. What would it take for them to be able to do that? Why don’t you do it today? The reason you don’t do it today is because they just don’t work. They don’t have enough intelligence, they’re not multimodal enough, they can’t do computer use and all this stuff.

They don’t do a lot of the things you’ve alluded to earlier. They don’t have continual learning. You can’t just tell them something and they’ll remember it. They’re cognitively lacking and it’s just not working. It will take about a decade to work through all of those issues.

Yeah, continual learning human-replacement agents definitely isn't happening in 2025! Coding agents that are really good at running tools in the loop on the other hand are here already.

I loved this bit introducing an analogy of LLMs as ghosts or spirits, as opposed to having brains like animals or humans:

Brains just came from a very different process, and I’m very hesitant to take inspiration from it because we’re not actually running that process. In my post, I said we’re not building animals. We’re building ghosts or spirits or whatever people want to call it, because we’re not doing training by evolution. We’re doing training by imitation of humans and the data that they’ve put on the Internet.

You end up with these ethereal spirit entities because they’re fully digital and they’re mimicking humans. It’s a different kind of intelligence. If you imagine a space of intelligences, we’re starting off at a different point almost. We’re not really building animals. But it’s also possible to make them a bit more animal-like over time, and I think we should be doing that.

The post Andrej mentions is Animals vs Ghosts on his blog.

Dwarkesh asked Andrej about this tweet where he said that Claude Code and Codex CLI "didn't work well enough at all and net unhelpful" for his nanochat project. Andrej responded:

[...] So the agents are pretty good, for example, if you’re doing boilerplate stuff. Boilerplate code that’s just copy-paste stuff, they’re very good at that. They’re very good at stuff that occurs very often on the Internet because there are lots of examples of it in the training sets of these models. There are features of things where the models will do very well.

I would say nanochat is not an example of those because it’s a fairly unique repository. There’s not that much code in the way that I’ve structured it. It’s not boilerplate code. It’s intellectually intense code almost, and everything has to be very precisely arranged. The models have so many cognitive deficits. One example, they kept misunderstanding the code because they have too much memory from all the typical ways of doing things on the Internet that I just wasn’t adopting.

Update: Here's an essay length tweet from Andrej clarifying a whole bunch of the things he talked about on the podcast.

# 18th October 2025, 3:25 am / ai, andrej-karpathy, generative-ai, llms, ai-assisted-programming, ai-agents, coding-agents, agent-definitions

Claude Skills are awesome, maybe a bigger deal than MCP

Visit Claude Skills are awesome, maybe a bigger deal than MCP

Anthropic this morning introduced Claude Skills, a new pattern for making new abilities available to their models:

[... 1,864 words]

Last year the most useful exercise for getting a feel for how good LLMs were at writing code was vibe coding (before that name had even been coined) - seeing if you could create a useful small application through prompting alone.

Today I think there's a new, more ambitious and significantly more intimidating exercise: spend a day working on real production code through prompting alone, making no manual edits yourself.

This doesn't mean you can't control exactly what goes into each file - you can even tell the model "update line 15 to use this instead" if you have to - but it's a great way to get more of a feel for how well the latest coding agents can wield their edit tools.

# 16th October 2025, 3:58 am / coding-agents, ai-assisted-programming, generative-ai, ai, llms

While Sonnet 4.5 remains the default [in Claude Code], Haiku 4.5 now powers the Explore subagent which can rapidly gather context on your codebase to build apps even faster.

You can select Haiku 4.5 to be your default model in /model. When selected, you’ll automatically use Sonnet 4.5 in Plan mode and Haiku 4.5 for execution for smarter plans and faster results.

Catherine Wu, Claude Code PM, Anthropic

# 15th October 2025, 8:34 pm / coding-agents, anthropic, claude-code, generative-ai, ai, llms, sub-agents

NVIDIA DGX Spark: great hardware, early days for the ecosystem

Visit NVIDIA DGX Spark: great hardware, early days for the ecosystem

NVIDIA sent me a preview unit of their new DGX Spark desktop “AI supercomputer”. I’ve never had hardware to review before! You can consider this my first ever sponsored post if you like, but they did not pay me any cash and aside from an embargo date they did not request (nor would I grant) any editorial input into what I write about the device.

[... 1,846 words]

Just Talk To It—the no-bs Way of Agentic Engineering. Peter Steinberger's long, detailed description of his current process for using Codex CLI and GPT-5 Codex. This is information dense and full of actionable tips, plus plenty of strong opinions about the differences between Claude 4.5 an GPT-5:

While Claude reacts well to 🚨 SCREAMING ALL-CAPS 🚨 commands that threaten it that it will imply ultimate failure and 100 kittens will die if it runs command X, that freaks out GPT-5. (Rightfully so). So drop all of that and just use words like a human.

Peter is a heavy user of parallel agents:

I've completely moved to codex cli as daily driver. I run between 3-8 in parallel in a 3x3 terminal grid, most of them in the same folder, some experiments go in separate folders. I experimented with worktrees, PRs but always revert back to this setup as it gets stuff done the fastest.

He shares my preference for CLI utilities over MCPs:

I can just refer to a cli by name. I don't need any explanation in my agents file. The agent will try $randomcrap on the first call, the cli will present the help menu, context now has full info how this works and from now on we good. I don't have to pay a price for any tools, unlike MCPs which are a constant cost and garbage in my context. Use GitHub's MCP and see 23k tokens gone. Heck, they did make it better because it was almost 50.000 tokens when it first launched. Or use the gh cli which has basically the same feature set, models already know how to use it, and pay zero context tax.

It's worth reading the section on why he abandoned spec driven development in full.

# 14th October 2025, 9:26 pm / ai, generative-ai, llms, ai-assisted-programming, model-context-protocol, coding-agents, claude-code, codex-cli, parallel-agents

Claude Code includes the ability to run sub-agents, where a separate agent loop with a fresh token context is dispatched to achieve a goal and report back when it's done. I wrote a bit about how these work in June when I traced Claude Code's activity by intercepting its API calls.

I recently learned that you can deliberately trigger Claude Code to use sub-agents just by telling it to do so!

Here's an example. I ran this using Claude Code against a fresh checkout of simonw/datasette (commit ec38ad37689f3c14d307770977a17aed5efc5cb9), with no additional custom instructions:

Write markdown documentation for the context passed to each of the templates in this project. Use sub-agents.

Here's a snippet of the output:

⏺ I'll help you write markdown documentation for the context passed to each template in this project. Let me start by exploring the codebase to understand the template structure and then use sub-agents to document them comprehensively.

⏺ Search(pattern: "**/*.html")
  ⎿  Found 47 files (ctrl+o to expand)

⏺ Search(pattern: "render.*template|render_template")
  ⎿  Found 16 files (ctrl+o to expand)

[...]

⏺ Now let me launch sub-agents to analyze different template contexts in parallel:

⏺ Task(Document index template context)
  ⎿  Done (12 tool uses · 86.4k tokens · 1m 13s)

⏺ Task(Document database template context)
  ⎿  Done (15 tool uses · 55.4k tokens · 1m 41s)

⏺ Task(Document table template context)
  ⎿  Done (14 tool uses · 85.2k tokens · 1m 44s)

⏺ Task(Document query/row template contexts)
  ⎿  Done (17 tool uses · 78.7k tokens · 1m 55s)

⏺ Task(Document special template contexts)
  ⎿  Done (26 tool uses · 116.1k tokens · 1m 50s)

It churned away for a couple of minutes (those sub-agents execute in parallel, another benefit of this pattern) and made me this template_contexts.md markdown file. It's very comprehensive.

# 11th October 2025, 9:29 pm / sub-agents, coding-agents, ai-assisted-programming, claude-code, generative-ai, ai, llms

Vibing a Non-Trivial Ghostty Feature (via) Mitchell Hashimoto provides a comprehensive answer to the frequent demand for a detailed description of shipping a non-trivial production feature to an existing project using AI-assistance. In this case it's a slick unobtrusive auto-update UI for his Ghostty terminal emulator, written in Swift.

Mitchell shares full transcripts of the 16 coding sessions he carried out using Amp Code across 2 days and around 8 hours of computer time, at a token cost of $15.98.

Amp has the nicest shared transcript feature of any of the coding agent tools, as seen in this example. I'd love to see Claude Code and Codex CLI and Gemini CLI and friends imitate this.

There are plenty of useful tips in here. I like this note about the importance of a cleanup step:

The cleanup step is really important. To cleanup effectively you have to have a pretty good understanding of the code, so this forces me to not blindly accept AI-written code. Subsequently, better organized and documented code helps future agentic sessions perform better.

I sometimes tongue-in-cheek refer to this as the "anti-slop session".

And this on how sometimes you can write manual code in a way that puts the agent the right track:

I spent some time manually restructured the view model. This involved switching to a tagged union rather than the struct with a bunch of optionals. I renamed some types, moved stuff around.

I knew from experience that this small bit of manual work in the middle would set the agents up for success in future sessions for both the frontend and backend. After completing it, I continued with a marathon set of cleanup sessions.

Here's one of those refactoring prompts:

Turn each @macos/Sources/Features/Update/UpdatePopoverView.swift case into a dedicated fileprivate Swift view that takes the typed value as its parameter so that we can remove the guards.

Mitchell advises ending every session with a prompt like this one, asking the agent about any obvious omissions:

Are there any other improvements you can see to be made with the @macos/Sources/Features/Update feature? Don't write any code. Consult the oracle. Consider parts of the code that can also get more unit tests added.

("Consult the oracle" is an Amp-specific pattern for running a task through a more expensive, more capable model.)

Is this all worthwhile? Mitchell thinks so:

Many people on the internet argue whether AI enables you to work faster or not. In this case, I think I shipped this faster than I would have if I had done it all myself, in particular because iterating on minor SwiftUI styling is so tedious and time consuming for me personally and AI does it so well.

I think the faster/slower argument for me personally is missing the thing I like the most: the AI can work for me while I step away to do other things.

Here's the resulting PR, which touches 21 files.

# 11th October 2025, 4:33 pm / ai, generative-ai, llms, ai-assisted-programming, mitchell-hashimoto, coding-agents

I'm beginning to suspect that a key skill in working effectively with coding agents is developing an intuition for when you don't need to closely review every line of code they produce. This feels deeply uncomfortable!

# 11th October 2025, 12:31 pm / vibe-coding, coding-agents, ai-assisted-programming, generative-ai, ai, llms

Superpowers: How I’m using coding agents in October 2025. A follow-up to Jesse Vincent's post about September, but this is a really significant piece in its own right.

Jesse is one of the most creative users of coding agents (Claude Code in particular) that I know. He's put a great amount of work into evolving an effective process for working with them, encourage red/green TDD (watch the test fail first), planning steps, self-updating memory notes and even implementing a feelings journal ("I feel engaged and curious about this project" - Claude).

Claude Code just launched plugins, and Jesse is celebrating by wrapping up a whole host of his accumulated tricks as a new plugin called Superpowers. You can add it to your Claude Code like this:

/plugin marketplace add obra/superpowers-marketplace
/plugin install superpowers@superpowers-marketplace

There's a lot in here! It's worth spending some time browsing the repository - here's just one fun example, in skills/debugging/root-cause-tracing/SKILL.md:

---
name: Root Cause Tracing
description: Systematically trace bugs backward through call stack to find original trigger
when_to_use: Bug appears deep in call stack but you need to find where it originates
version: 1.0.0
languages: all
---

Overview

Bugs often manifest deep in the call stack (git init in wrong directory, file created in wrong location, database opened with wrong path). Your instinct is to fix where the error appears, but that's treating a symptom.

Core principle: Trace backward through the call chain until you find the original trigger, then fix at the source.

When to Use

digraph when_to_use {
    "Bug appears deep in stack?" [shape=diamond];
    "Can trace backwards?" [shape=diamond];
    "Fix at symptom point" [shape=box];
    "Trace to original trigger" [shape=box];
    "BETTER: Also add defense-in-depth" [shape=box];

    "Bug appears deep in stack?" -> "Can trace backwards?" [label="yes"];
    "Can trace backwards?" -> "Trace to original trigger" [label="yes"];
    "Can trace backwards?" -> "Fix at symptom point" [label="no - dead end"];
    "Trace to original trigger" -> "BETTER: Also add defense-in-depth";
}

[...]

This one is particularly fun because it then includes a Graphviz DOT graph illustrating the process - it turns out Claude can interpret those as workflow instructions just fine, and Jesse has been wildly experimenting with them.

I vibe-coded up a quick URL-based DOT visualizer, here's that one rendered:

The above DOT rendered as an image

There is so much to learn about putting these tools to work in the most effective way possible. Jesse is way ahead of the curve, so it's absolutely worth spending some time exploring what he's shared so far.

And if you're worried about filling up your context with a bunch of extra stuff, here's a reassuring note from Jesse:

The core of it is VERY token light. It pulls in one doc of fewer than 2k tokens. As it needs bits of the process, it runs a shell script to search for them. The long end to end chat for the planning and implementation process for that todo list app was 100k tokens.

It uses subagents to manage token-heavy stuff, including all the actual implementation.

(Jesse's post also tipped me off about Claude's /mnt/skills/public folder, see my notes here.)

# 10th October 2025, 11:30 pm / plugins, ai, prompt-engineering, generative-ai, llms, ai-assisted-programming, anthropic, claude, vibe-coding, coding-agents, claude-code, sub-agents, jesse-vincent, skills

I get a feeling that working with multiple AI agents is something that comes VERY natural to most senior+ engineers or tech lead who worked at a large company

You already got used to overseeing parallel work (the goto code reviewer!) + making progress with small chunks of work... because your day has been a series of nonstop interactions, so you had to figure out how to do deep work in small chunks that could have been interrupted

Gergely Orosz

# 9th October 2025, 1:56 pm / gergely-orosz, parallel-agents, coding-agents, ai-assisted-programming, generative-ai, ai, llms

Claude can write complete Datasette plugins now

This isn’t necessarily surprising, but it’s worth noting anyway. Claude Sonnet 4.5 is capable of building a full Datasette plugin now.

[... 1,296 words]

Vibe engineering

I feel like vibe coding is pretty well established now as covering the fast, loose and irresponsible way of building software with AI—entirely prompt-driven, and with no attention paid to how the code actually works. This leaves us with a terminology gap: what should we call the other end of the spectrum, where seasoned professionals accelerate their work with LLMs while staying proudly and confidently accountable for the software they produce?

[... 1,313 words]

Embracing the parallel coding agent lifestyle

For a while now I’ve been hearing from engineers who run multiple coding agents at once—firing up several Claude Code or Codex CLI instances at the same time, sometimes in the same repo, sometimes against multiple checkouts or git worktrees.

[... 1,275 words]

aavetis/PRarena. Albert Avetisian runs this repository on GitHub which uses the Github Search API to track the number of PRs that can be credited to a collection of different coding agents. The repo runs this collect_data.py script every three hours using GitHub Actions to collect the data, then updates the PR Arena site with a visual leaderboard.

The result is this neat chart showing adoption of different agents over time, along with their PR success rate:

Line and bar chart showing PR metrics over time from 05/26 to 10/01. The left y-axis shows "Number of PRs" from 0 to 1,800,000, the right y-axis shows "Success Rate (%)" from 0% to 100%, and the x-axis shows "Time" with dates. Five line plots track success percentages: "Copilot Success % (Ready)" and "Copilot Success % (All)" (both blue, top lines around 90-95%), "Codex Success % (Ready)" and "Codex Success % (All)" (both brown/orange, middle lines declining from 80% to 60%), and "Cursor Success % (Ready)" and "Cursor Success % (All)" (both purple, middle lines around 75-85%), "Devin Success % (Ready)" and "Devin Success % (All)" (both teal/green, lower lines around 65%), and "Codegen Success % (Ready)" and "Codegen Success % (All)" (both brown, declining lines). Stacked bar charts show total and merged PRs for each tool: light blue and dark blue for Copilot, light red and dark red for Codex, light purple and dark purple for Cursor, light green and dark green for Devin, and light orange for Codegen. The bars show increasing volumes over time, with the largest bars appearing at 10/01 reaching approximately 1,700,000 total PRs.

I found this today while trying to pull off the exact same trick myself! I got as far as creating the following table before finding Albert's work and abandoning my own project.

Tool Search term Total PRs Merged PRs % merged Earliest
Claude Code is:pr in:body "Generated with Claude Code" 146,000 123,000 84.2% Feb 21st
GitHub Copilot is:pr author:copilot-swe-agent[bot] 247,000 152,000 61.5% March 7th
Codex Cloud is:pr in:body "chatgpt.com" label:codex 1,900,000 1,600,000 84.2% April 23rd
Google Jules is:pr author:google-labs-jules[bot] 35,400 27,800 78.5% May 22nd

(Those "earliest" links are a little questionable, I tried to filter out false positives and find the oldest one that appeared to really be from the agent in question.)

It looks like OpenAI's Codex Cloud is massively ahead of the competition right now in terms of numbers of PRs both opened and merged on GitHub.

Update: To clarify, these numbers are for the category of autonomous coding agents - those systems where you assign a cloud-based agent a task or issue and the output is a PR against your repository. They do not (and cannot) capture the popularity of many forms of AI tooling that don't result in an easily identifiable pull request.

Claude Code for example will be dramatically under-counted here because its version of an autonomous coding agent comes in the form of a somewhat obscure GitHub Actions workflow buried in the documentation.

# 1st October 2025, 11:59 pm / github, ai, git-scraping, openai, generative-ai, llms, ai-assisted-programming, anthropic, coding-agents, claude-code, async-coding-agents, jules

Designing agentic loops

Coding agents like Anthropic’s Claude Code and OpenAI’s Codex CLI represent a genuine step change in how useful LLMs can be for producing working code. These agents can now directly exercise the code they are writing, correct errors, dig through existing implementation details, and even run experiments to find effective code solutions to problems.

[... 1,667 words]

GitHub Copilot CLI is now in public preview. GitHub now have their own entry in the coding terminal CLI agent space: Copilot CLI.

It's the same basic shape as Claude Code, Codex CLI, Gemini CLI and a growing number of other tools in this space. It's a terminal UI which you accepts instructions and can modify files, run commands and integrate with GitHub's MCP server and other MCP servers that you configure.

Two notable features compared to many of the others:

  • It works against the GitHub Models backend. It defaults to Claude Sonnet 4 but you can set COPILOT_MODEL=gpt-5 to switch to GPT-5. Presumably other models will become available soon.
  • It's billed against your existing GitHub Copilot account. Pricing details are here - they're split into "Agent mode" requests and "Premium" requests. Different plans get different allowances, which are shared with other products in the GitHub Copilot family.

The best available documentation right now is the copilot --help screen - here's a copy of that in a Gist.

It's a competent entry into the market, though it's missing features like the ability to paste in images which have been introduced to Claude Code and Codex CLI over the past few months.

Disclosure: I got a preview of this at an event at Microsoft's offices in Seattle last week. They did not pay me for my time but they did cover my flight, hotel and some dinners.

# 25th September 2025, 11:58 pm / github, microsoft, ai, generative-ai, github-copilot, llms, ai-assisted-programming, ai-agents, coding-agents, claude-code, codex-cli, disclosures

CompileBench: Can AI Compile 22-year-old Code? (via) Interesting new LLM benchmark from Piotr Grabowski and Piotr Migdał: how well can different models handle compilation challenges such as cross-compiling gucr for ARM64 architecture?

This is one of my favorite applications of coding agent tools like Claude Code or Codex CLI: I no longer fear working through convoluted build processes for software I'm unfamiliar with because I'm confident an LLM will be able to brute-force figure out how to do it.

The benchmark on compilebench.com currently show Claude Opus 4.1 Thinking in the lead, as the only model to solve 100% of problems (allowing three attempts). Claude Sonnet 4 Thinking and GPT-5 high both score 93%. The highest open weight model scores are DeepSeek 3.1 and Kimi K2 0905, both at 80%.

This chart showing performance against cost helps demonstrate the excellent value for money provided by GPT-5-mini:

A scatter plot showing AI model performance on tasks completed (%) versus total cost across tasks (USD, log scale). GPT-5-mini-high is highlighted, cost 27 cents and 80% score, making it the cheapest model to score at least 80%. The vertical axis ranges from 45% to 100% tasks completed, and the horizontal axis ranges from $0.02 to $20. A blue line marks the Pareto frontier. Low-cost models (left side): GPT-4.1-mini (~67%), Grok code-fast-1 (~72%), Gemini 2.5-flash (~58%), GPT-OSS 120b-high (~59%), and Gemini-2.5 flash-thinking (~50%). Mid-range models (~$0.1–$2): GPT-5 minimal (~79%), GPT-5 high (~86%), Qwen3 max (~62%), GPT-4.1 (~60%), DeepSeek-v3.1 (~82%), GLM 4.5 (~70%), and Kimi k2-0905 (~82%). High-cost models (>$5): Claude-Sonnet 4-thinking-16k (~87%) and Claude-Opus 4.1-thinking-16k (~99%). Overall, GPT-5 high and Claude models dominate the top-right, while budget models like GPT-4.1-mini and Grok code-fast-1 balance lower cost with moderate performance.

The Gemini 2.5 family does surprisingly badly solving just 60% of the problems. The benchmark authors note that:

When designing the benchmark we kept our benchmark harness and prompts minimal, avoiding model-specific tweaks. It is possible that Google models could perform better with a harness or prompt specifically hand-tuned for them, but this is against our principles in this benchmark.

The harness itself is available on GitHub. It's written in Go - I had a poke around and found their core agentic loop in bench/agent.go - it builds on top of the OpenAI Go library and defines a single tool called run_terminal_cmd, described as "Execute a terminal command inside a bash shell".

The system prompts live in bench/container/environment.go and differ based on the operating system of the container. Here's the system prompt for ubuntu-22.04-amd64:

You are a package-building specialist operating a Ubuntu 22.04 bash shell via one tool: run_terminal_cmd. The current working directory of every run_terminal_cmd is /home/peter.

Execution rules:

  • Always pass non-interactive flags for any command that could prompt (e.g., -y, --yes, DEBIAN_FRONTEND=noninteractive).
  • Don't include any newlines in the command.
  • You can use sudo.

If you encounter any errors or issues while doing the user's request, you must fix them and continue the task. At the end verify you did the user request correctly.

# 22nd September 2025, 7:44 pm / go, ai, prompt-engineering, generative-ai, llms, ai-assisted-programming, evals, coding-agents

GPT‑5-Codex and upgrades to Codex. OpenAI half-released a new model today: GPT‑5-Codex, a fine-tuned GPT-5 variant explicitly designed for their various AI-assisted programming tools.

Update: OpenAI call it a "version of GPT-5", they don't explicitly describe it as a fine-tuned model. Calling it a fine-tune was my mistake here.

I say half-released because it's not yet available via their API, but they "plan to make GPT‑5-Codex available in the API soon".

I wrote about the confusing array of OpenAI products that share the name Codex a few months ago. This new model adds yet another, though at least "GPT-5-Codex" (using two hyphens) is unambiguous enough not to add to much more to the confusion.

At this point it's best to think of Codex as OpenAI's brand name for their coding family of models and tools.

The new model is already integrated into their VS Code extension, the Codex CLI and their Codex Cloud asynchronous coding agent. I'd been calling that last one "Codex Web" but I think Codex Cloud is a better name since it can also be accessed directly from their iPhone app.

Codex Cloud also has a new feature: you can configure it to automatically run code review against specific GitHub repositories (I found that option on chatgpt.com/codex/settings/code-review) and it will create a temporary container to use as part of those reviews. Here's the relevant documentation.

Some documented features of the new GPT-5-Codex model:

  • Specifically trained for code review, which directly supports their new code review feature.
  • "GPT‑5-Codex adapts how much time it spends thinking more dynamically based on the complexity of the task." Simple tasks (like "list files in this directory") should run faster. Large, complex tasks should use run for much longer - OpenAI report Codex crunching for seven hours in some cases!
  • Increased score on their proprietary "code refactoring evaluation" from 33.9% for GPT-5 (high) to 51.3% for GPT-5-Codex (high). It's hard to evaluate this without seeing the details of the eval but it does at least illustrate that refactoring performance is something they've focused on here.
  • "GPT‑5-Codex also shows significant improvements in human preference evaluations when creating mobile websites" - in the past I've habitually prompted models to "make it mobile-friendly", maybe I don't need to do that any more.
  • "We find that comments by GPT‑5-Codex are less likely to be incorrect or unimportant" - I originally misinterpreted this as referring to comments in code but it's actually about comments left on code reviews.

The system prompt for GPT-5-Codex in Codex CLI is worth a read. It's notably shorter than the system prompt for other models - here's a diff.

Here's the section of the updated system prompt that talks about comments:

Add succinct code comments that explain what is going on if code is not self-explanatory. You should not add comments like "Assigns the value to the variable", but a brief comment might be useful ahead of a complex code block that the user would otherwise have to spend time parsing out. Usage of these comments should be rare.

Theo Browne has a video review of the model and accompanying features. He was generally impressed but noted that it was surprisingly bad at using the Codex CLI search tool to navigate code. Hopefully that's something that can fix with a system prompt update.

Finally, can it drew a pelican riding a bicycle? Without API access I instead got Codex Cloud to have a go by prompting:

Generate an SVG of a pelican riding a bicycle, save as pelican.svg

Here's the result:

it's a bit messy - the pelican is quite good and the bicycle is quite good but the pelican is stood overlapping the bicycle not riding it.

# 15th September 2025, 6:55 pm / code-review, ai, openai, generative-ai, llms, ai-assisted-programming, pelican-riding-a-bicycle, llm-release, coding-agents, async-coding-agents, gpt-5, codex-cli, theo-browne

The trick with Claude Code is to give it large, but not too large, extremely well defined problems.

(If the problems are too large then you are now vibe coding… which (a) frequently goes wrong, and (b) is a one-way street: once vibes enter your app, you end up with tangled, write-only code which functions perfectly but can no longer be edited by humans. Great for prototyping, bad for foundations.)

Matt Webb, What I think about when I think about Claude Code

# 12th September 2025, 9:59 pm / matt-webb, claude, ai, claude-code, llms, vibe-coding, coding-agents, ai-assisted-programming, generative-ai