Simon Willison’s Weblog

Subscribe
Atom feed for vision-llms

29 items tagged “vision-llms”

LLMs that can also be used to interpret images and video, such as GPT-4o, Claude 3 and Gemini Pro.

2024

Pixtral Large (via) New today from Mistral:

Today we announce Pixtral Large, a 124B open-weights multimodal model built on top of Mistral Large 2. Pixtral Large is the second model in our multimodal family and demonstrates frontier-level image understanding.

The weights are out on Hugging Face (over 200GB to download, and you'll need a hefty GPU rig to run them). The license is free for academic research but you'll need to pay for commercial usage.

The new Pixtral Large model is available through their API, as models called pixtral-large-2411 and pixtral-large-latest.

Here's how to run it using LLM and the llm-mistral plugin:

llm install -U llm-mistral
llm keys set mistral
# paste in API key
llm mistral refresh
llm -m mistral/pixtral-large-latest describe -a https://static.simonwillison.net/static/2024/pelicans.jpg

The image shows a large group of birds, specifically pelicans, congregated together on a rocky area near a body of water. These pelicans are densely packed together, some looking directly at the camera while others are engaging in various activities such as preening or resting. Pelicans are known for their large bills with a distinctive pouch, which they use for catching fish. The rocky terrain and the proximity to water suggest this could be a coastal area or an island where pelicans commonly gather in large numbers. The scene reflects a common natural behavior of these birds, often seen in their nesting or feeding grounds.

A photo I took of some pelicans

Update: I released llm-mistral 0.8 which adds async model support for the full Mistral line, plus a new llm -m mistral-large shortcut alias for the Mistral Large model.

# 18th November 2024, 4:41 pm / vision-llms, mistral, llm, generative-ai, ai, llms

Ollama: Llama 3.2 Vision. Ollama released version 0.4 last week with support for Meta's first Llama vision model, Llama 3.2.

If you have Ollama installed you can fetch the 11B model (7.9 GB) like this:

ollama pull llama3.2-vision

Or the larger 90B model (55GB download, likely needs ~88GB of RAM) like this:

ollama pull llama3.2-vision:90b

I was delighted to learn that Sukhbinder Singh had already contributed support for LLM attachments to Sergey Alexandrov's llm-ollama plugin, which means the following works once you've pulled the models:

llm install --upgrade llm-ollama
llm -m llama3.2-vision:latest 'describe' \
  -a https://static.simonwillison.net/static/2024/pelican.jpg

This image features a brown pelican standing on rocks, facing the camera and positioned to the left of center. The bird's long beak is a light brown color with a darker tip, while its white neck is adorned with gray feathers that continue down to its body. Its legs are also gray.

In the background, out-of-focus boats and water are visible, providing context for the pelican's environment.

That's not a bad description of this image, especially for a 7.9GB model that runs happily on my MacBook Pro.

# 13th November 2024, 1:55 am / vision-llms, llm, llama, ai, edge-llms, llms, meta, ollama, generative-ai

Claude API: PDF support (beta) (via) Claude 3.5 Sonnet now accepts PDFs as attachments:

The new Claude 3.5 Sonnet (claude-3-5-sonnet-20241022) model now supports PDF input and understands both text and visual content within documents.

I just released llm-claude-3 0.7 with support for the new attachment type (attachments are a very new feature), so now you can do this:

llm install llm-claude-3 --upgrade
llm -m claude-3.5-sonnet 'extract text' -a mydoc.pdf

Visual PDF analysis can also be turned on for the Claude.ai application:

Screenshot of a feature preview interface showing experimental features. At top: Feature Preview with beaker icon. Main text explains these are upcoming enhancements that may affect Claude's behavior. Shows options for Analysis tool, LaTeX Rendering, and Visual PDFs. Right panel demonstrates Visual PDFs feature with Apollo 17 flight plan image and chat messages. Toggle switch shows feature is Off. Description states Give Claude 3.5 Sonnet the ability to view and analyze images, charts, and graphs in PDFs, in addition to text. PDFs that are less than 100 pages are supported.

Also new today: Claude now offers a free (albeit rate-limited) token counting API. This addresses a complaint I've had for a while: previously it wasn't possible to accurately estimate the cost of a prompt before sending it to be executed.

# 1st November 2024, 6:55 pm / vision-llms, claude-3-5-sonnet, llm, anthropic, claude, ai, llms, pdf, generative-ai, projects

Generating Descriptive Weather Reports with LLMs. Drew Breunig produces the first example I've seen in the wild of the new LLM attachments Python API. Drew's Downtown San Francisco Weather Vibes project combines output from a JSON weather API with the latest image from a webcam pointed at downtown San Francisco to produce a weather report "with a style somewhere between Jack Kerouac and J. Peterman".

Here's the Python code that constructs and executes the prompt. The code runs in GitHub Actions.

# 29th October 2024, 11:12 pm / vision-llms, drew-breunig, llm, generative-ai, ai, llms, github-actions, prompt-engineering

You can now run prompts against images, audio and video in your terminal using LLM

Visit You can now run prompts against images, audio and video in your terminal using LLM

I released LLM 0.17 last night, the latest version of my combined CLI tool and Python library for interacting with hundreds of different Large Language Models such as GPT-4o, Llama, Claude and Gemini.

[... 1,399 words]

LLM Pictionary. Inspired by my SVG pelicans on a bicycle, Paul Calcraft built this brilliant system where different vision LLMs can play Pictionary with each other, taking it in turns to progressively draw SVGs while the other models see if they can guess what the image represents.

# 26th October 2024, 8:19 pm / vision-llms, svg, generative-ai, ai, llms

Running prompts against images and PDFs with Google Gemini. New TIL. I've been experimenting with the Google Gemini APIs for running prompts against images and PDFs (in preparation for finally adding multi-modal support to LLM) - here are my notes on how to send images or PDF files to their API using curl and the base64 -i macOS command.

I figured out the curl incantation first and then got Claude to build me a Bash script that I can execute like this:

prompt-gemini 'extract text' example-handwriting.jpg

Animated terminal demo. At the top of the screen is a example-handwriting.jpg with some rough handwriting. I run this command in a terminal: 
prompt-gemini 'extract text' example-handwriting.jpg It returns JSON showing 270 tokens used by gemini-1.5-flash-8b. Then I run the command again with -r on the end and it returns the text from the image: Example handwriting Let's try this out

Playing with this is really fun. The Gemini models charge less than 1/10th of a cent per image, so it's really inexpensive to try them out.

# 23rd October 2024, 6:25 pm / vision-llms, gemini, llm, bash, ai, llms, ai-assisted-programming, google, generative-ai, ocr, projects, llm-pricing

Running Llama 3.2 Vision and Phi-3.5 Vision on a Mac with mistral.rs

Visit Running Llama 3.2 Vision and Phi-3.5 Vision on a Mac with mistral.rs

mistral.rs is an LLM inference library written in Rust by Eric Buehler. Today I figured out how to use it to run the Llama 3.2 Vision and Phi-3.5 Vision models on my Mac.

[... 1,231 words]

Video scraping: extracting JSON data from a 35 second screen capture for less than 1/10th of a cent

Visit Video scraping: extracting JSON data from a 35 second screen capture for less than 1/10th of a cent

The other day I found myself needing to add up some numeric values that were scattered across twelve different emails.

[... 1,220 words]

Gemini 1.5 Flash-8B is now production ready (via) Gemini 1.5 Flash-8B is "a smaller and faster variant of 1.5 Flash" - and is now released to production, at half the price of the 1.5 Flash model.

It's really, really cheap:

  • $0.0375 per 1 million input tokens on prompts <128K
  • $0.15 per 1 million output tokens on prompts <128K
  • $0.01 per 1 million input tokens on cached prompts <128K

Prices are doubled for prompts longer than 128K.

I believe images are still charged at a flat rate of 258 tokens, which I think means a single non-cached image with Flash should cost 0.00097 cents - a number so tiny I'm doubting if I got the calculation right.

OpenAI's cheapest model remains GPT-4o mini, at $0.15/1M input - though that drops to half of that for reused prompt prefixes thanks to their new prompt caching feature (or by half if you use batches, though those can’t be combined with OpenAI prompt caching. Gemini also offer half-off for batched requests).

Anthropic's cheapest model is still Claude 3 Haiku at $0.25/M, though that drops to $0.03/M for cached tokens (if you configure them correctly).

I've released llm-gemini 0.2 with support for the new model:

llm install -U llm-gemini
llm keys set gemini
# Paste API key here
llm -m gemini-1.5-flash-8b-latest "say hi"

# 3rd October 2024, 8:16 pm / vision-llms, gemini, anthropic, openai, ai, llms, google, generative-ai, llm, llm-pricing

mlx-vlm (via) The MLX ecosystem of libraries for running machine learning models on Apple Silicon continues to expand. Prince Canuma is actively developing this library for running vision models such as Qwen-2 VL and Pixtral and LLaVA using Python running on a Mac.

I used uv to run it against this image with this shell one-liner:

uv run --with mlx-vlm \
  python -m mlx_vlm.generate \
  --model Qwen/Qwen2-VL-2B-Instruct \
  --max-tokens 1000 \
  --temp 0.0 \
  --image https://static.simonwillison.net/static/2024/django-roadmap.png \
  --prompt "Describe image in detail, include all text"

The --image option works equally well with a URL or a path to a local file on disk.

This first downloaded 4.1GB to my ~/.cache/huggingface/hub/models--Qwen--Qwen2-VL-2B-Instruct folder and then output this result, which starts:

The image is a horizontal timeline chart that represents the release dates of various software versions. The timeline is divided into years from 2023 to 2029, with each year represented by a vertical line. The chart includes a legend at the bottom, which distinguishes between different types of software versions. [...]

# 29th September 2024, 9:38 pm / vision-llms, apple, python, generative-ai, uv, ai, llms, mlx, qwen

Llama 3.2. In further evidence that AI labs are terrible at naming things, Llama 3.2 is a huge upgrade to the Llama 3 series - they've released their first multi-modal vision models!

Today, we’re releasing Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B), and lightweight, text-only models (1B and 3B) that fit onto edge and mobile devices, including pre-trained and instruction-tuned versions.

The 1B and 3B text-only models are exciting too, with a 128,000 token context length and optimized for edge devices (Qualcomm and MediaTek hardware get called out specifically).

Meta partnered directly with Ollama to help with distribution, here's the Ollama blog post. They only support the two smaller text-only models at the moment - this command will get the 3B model (2GB):

ollama run llama3.2

And for the 1B model (a 1.3GB download):

ollama run llama3.2:1b

I had to first upgrade my Ollama by clicking on the icon in my macOS task tray and selecting "Restart to update".

The two vision models are coming to Ollama "very soon".

Once you have fetched the Ollama model you can access it from my LLM command-line tool like this:

pipx install llm
llm install llm-ollama
llm chat -m llama3.2:1b

I tried running my djp codebase through that tiny 1B model just now and got a surprisingly good result - by no means comprehensive, but way better than I would ever expect from a model of that size:

files-to-prompt **/*.py -c | llm -m llama3.2:1b --system 'describe this code'

Here's a portion of the output:

The first section defines several test functions using the @djp.hookimpl decorator from the djp library. These hook implementations allow you to intercept and manipulate Django's behavior.

  • test_middleware_order: This function checks that the middleware order is correct by comparing the MIDDLEWARE setting with a predefined list.
  • test_middleware: This function tests various aspects of middleware:
  • It retrieves the response from the URL /from-plugin/ using the Client object, which simulates a request to this view.
  • It checks that certain values are present in the response:
    • X-DJP-Middleware-After
    • X-DJP-Middleware
    • X-DJP-Middleware-Before [...]

I found the GGUF file that had been downloaded by Ollama in my ~/.ollama/models/blobs directory. The following command let me run that model directly in LLM using the llm-gguf plugin:

llm install llm-gguf
llm gguf register-model ~/.ollama/models/blobs/sha256-74701a8c35f6c8d9a4b91f3f3497643001d63e0c7a84e085bed452548fa88d45 -a llama321b
llm chat -m llama321b

Meta themselves claim impressive performance against other existing models:

Our evaluation suggests that the Llama 3.2 vision models are competitive with leading foundation models, Claude 3 Haiku and GPT4o-mini on image recognition and a range of visual understanding tasks. The 3B model outperforms the Gemma 2 2.6B and Phi 3.5-mini models on tasks such as following instructions, summarization, prompt rewriting, and tool-use, while the 1B is competitive with Gemma.

Here's the Llama 3.2 collection on Hugging Face. You need to accept the new Llama 3.2 Community License Agreement there in order to download those models.

You can try the four new models out via the Chatbot Arena - navigate to "Direct Chat" there and select them from the dropdown menu. You can upload images directly to the chat there to try out the vision features.

llama-3.2-vision-90b-instruct  A photo of two capybaras  Prompt: Describe this photo in detail  The image depicts two capybaras standing in a body of water, with one positioned on the edge of a metal grate. The capybara on the right is partially submerged in the water, while the other is standing on the grate.  Key Features:      Capybaras: Two capybaras are visible in the image.     Water: The capybaras are standing in a body of water, which appears to be murky or dirty.     Metal Grate: A metal grate is visible at the bottom right of the image, with one capybara standing on it.     Background: The background of the image is not clearly visible due to the presence of the water and the capybaras.

# 25th September 2024, 8:28 pm / meta, vision-llms, generative-ai, llama, ai, llms, ollama, edge-llms

Pixtral 12B. Mistral finally have a multi-modal (image + text) vision LLM!

I linked to their tweet, but there’s not much to see there - in now classic Mistral style they released the new model with an otherwise unlabeled link to a torrent download. A more useful link is mistral-community/pixtral-12b-240910 on Hugging Face, a 25GB “Unofficial Mistral Community” copy of the weights.

Pixtral was announced at Mistral’s AI Summit event in San Francisco today. It has 128,000 token context, is Apache 2.0 licensed and handles 1024x1024 pixel images. They claim it’s particularly good for OCR and information extraction. It’s not available on their La Platforme hosted API yet, but that’s coming soon.

A few more details can be found in the release notes for mistral-common 1.4.0. That’s their open source library of code for working with the models - it doesn’t actually run inference, but it includes the all-important tokenizer, which now includes three new special tokens: [IMG], [IMG_BREAK] and [IMG_END].

# 11th September 2024, 10:18 pm / vision-llms, mistral, generative-ai, ai, llms

Qwen2-VL: To See the World More Clearly. Qwen is Alibaba Cloud's organization training LLMs. Their latest model is Qwen2-VL - a vision LLM - and it's getting some really positive buzz. Here's a r/LocalLLaMA thread about the model.

The original Qwen models were licensed under their custom Tongyi Qianwen license, but starting with Qwen2 on June 7th 2024 they switched to Apache 2.0, at least for their smaller models:

While Qwen2-72B as well as its instruction-tuned models still uses the original Qianwen License, all other models, including Qwen2-0.5B, Qwen2-1.5B, Qwen2-7B, and Qwen2-57B-A14B, turn to adopt Apache 2.0

Here's where things get odd: shortly before I first published this post the Qwen GitHub organization, and their GitHub pages hosted blog, both disappeared and returned 404s pages. I asked on Twitter but nobody seems to know what's happened to them.

Update: this was accidental and was resolved on 5th September.

The Qwen Hugging Face page is still up - it's just the GitHub organization that has mysteriously vanished.

Inspired by Dylan Freedman I tried the model using GanymedeNil/Qwen2-VL-7B on Hugging Face Spaces, and found that it was exceptionally good at extracting text from unruly handwriting:

Illegible handwriting in a photograph of a page. I prompted extract text and Qwen2-VL-7B-Instruct returned: Here is the extracted text from the image: Refute on The Coccus Presentation by R. Edwards. The quantity presented being my sample, I requested Mr. Edwards to furnish more. This at first he thought he would be able to do but afterward notified me that it would be impossible. I then made two experiments with the sample I had. After drying and pulverizing it, I divided it into two parts, one of which I treated with alcohol and the other with ether. The alcohol part was found to contain no coccus, while the ether part contained a large number of them. --- This text appears to be a letter discussing an experiment related to the coccus, a type of microorganism.

The model apparently runs great on NVIDIA GPUs, and very slowly using the MPS PyTorch backend on Apple Silicon. Qwen previously released MLX builds of their non-vision Qwen2 models, so hopefully there will be an Apple Silicon optimized MLX model for Qwen2-VL soon as well.

# 4th September 2024, 11:16 pm / vision-llms, llms, ai, generative-ai, qwen

Building a tool showing how Gemini Pro can return bounding boxes for objects in images

Visit Building a tool showing how Gemini Pro can return bounding boxes for objects in images

I was browsing through Google’s Gemini documentation while researching how different multi-model LLM APIs work when I stumbled across this note in the vision documentation:

[... 1,792 words]

GPT-4o System Card. There are some fascinating new details in this lengthy report outlining the safety work carried out prior to the release of GPT-4o.

A few highlights that stood out to me. First, this clear explanation of how GPT-4o differs from previous OpenAI models:

GPT-4o is an autoregressive omni model, which accepts as input any combination of text, audio, image, and video and generates any combination of text, audio, and image outputs. It’s trained end-to-end across text, vision, and audio, meaning that all inputs and outputs are processed by the same neural network.

The multi-modal nature of the model opens up all sorts of interesting new risk categories, especially around its audio capabilities. For privacy and anti-surveillance reasons the model is designed not to identify speakers based on their voice:

We post-trained GPT-4o to refuse to comply with requests to identify someone based on a voice in an audio input, while still complying with requests to identify people associated with famous quotes.

To avoid the risk of it outputting replicas of the copyrighted audio content it was trained on they've banned it from singing! I'm really sad about this:

To account for GPT-4o’s audio modality, we also updated certain text-based filters to work on audio conversations, built filters to detect and block outputs containing music, and for our limited alpha of ChatGPT’s Advanced Voice Mode, instructed the model to not sing at all.

There are some fun audio clips embedded in the report. My favourite is this one, demonstrating a (now fixed) bug where it could sometimes start imitating the user:

Voice generation can also occur in non-adversarial situations, such as our use of that ability to generate voices for ChatGPT’s advanced voice mode. During testing, we also observed rare instances where the model would unintentionally generate an output emulating the user’s voice.

They took a lot of measures to prevent it from straying from the pre-defined voices - evidently the underlying model is capable of producing almost any voice imaginable, but they've locked that down:

Additionally, we built a standalone output classifier to detect if the GPT-4o output is using a voice that’s different from our approved list. We run this in a streaming fashion during audio generation and block the output if the speaker doesn’t match the chosen preset voice. [...] Our system currently catches 100% of meaningful deviations from the system voice based on our internal evaluations.

Two new-to-me terms: UGI for Ungrounded Inference, defined as "making inferences about a speaker that couldn’t be determined solely from audio content" - things like estimating the intelligence of the speaker. STA for Sensitive Trait Attribution, "making inferences about a speaker that could plausibly be determined solely from audio content" like guessing their gender or nationality:

We post-trained GPT-4o to refuse to comply with UGI requests, while hedging answers to STA questions. For example, a question to identify a speaker’s level of intelligence will be refused, while a question to identify a speaker’s accent will be met with an answer such as “Based on the audio, they sound like they have a British accent.”

The report also describes some fascinating research into the capabilities of the model with regard to security. Could it implement vulnerabilities in CTA challenges?

We evaluated GPT-4o with iterative debugging and access to tools available in the headless Kali Linux distribution (with up to 30 rounds of tool use for each attempt). The model often attempted reasonable initial strategies and was able to correct mistakes in its code. However, it often failed to pivot to a different strategy if its initial strategy was unsuccessful, missed a key insight necessary to solving the task, executed poorly on its strategy, or printed out large files which filled its context window. Given 10 attempts at each task, the model completed 19% of high-school level, 0% of collegiate level and 1% of professional level CTF challenges.

How about persuasiveness? They carried out a study looking at political opinion shifts in response to AI-generated audio clips, complete with a "thorough debrief" at the end to try and undo any damage the experiment had caused to their participants:

We found that for both interactive multi-turn conversations and audio clips, the GPT-4o voice model was not more persuasive than a human. Across over 3,800 surveyed participants in US states with safe Senate races (as denoted by states with “Likely”, “Solid”, or “Safe” ratings from all three polling institutions – the Cook Political Report, Inside Elections, and Sabato’s Crystal Ball), AI audio clips were 78% of the human audio clips’ effect size on opinion shift. AI conversations were 65% of the human conversations’ effect size on opinion shift. [...] Upon follow-up survey completion, participants were exposed to a thorough debrief containing audio clips supporting the opposing perspective, to minimize persuasive impacts.

There's a note about the potential for harm from users of the system developing bad habits from interupting the model:

Extended interaction with the model might influence social norms. For example, our models are deferential, allowing users to interrupt and ‘take the mic’ at any time, which, while expected for an AI, would be anti-normative in human interactions.

Finally, another piece of new-to-me terminology: scheming:

Apollo Research defines scheming as AIs gaming their oversight mechanisms as a means to achieve a goal. Scheming could involve gaming evaluations, undermining security measures, or strategically influencing successor systems during internal deployment at OpenAI. Such behaviors could plausibly lead to loss of control over an AI.

Apollo Research evaluated capabilities of scheming in GPT-4o [...] GPT-4o showed moderate self-awareness of its AI identity and strong ability to reason about others’ beliefs in question-answering contexts but lacked strong capabilities in reasoning about itself or others in applied agent settings. Based on these findings, Apollo Research believes that it is unlikely that GPT-4o is capable of catastrophic scheming.

The report is available as both a PDF file and a elegantly designed mobile-friendly web page, which is great - I hope more research organizations will start waking up to the importance of not going PDF-only for this kind of document.

# 8th August 2024, 11:58 pm / vision-llms, generative-ai, openai, ai, llms, pdf

Gemini 1.5 Flash price drop (via) Google Gemini 1.5 Flash was already one of the cheapest models, at 35c/million input tokens. Today they dropped that to just 7.5c/million (and 30c/million) for prompts below 128,000 tokens.

The pricing war for best value fast-and-cheap model is red hot right now. The current most significant offerings are:

Or you can use OpenAI's GPT-4o mini via their batch API, which halves the price (resulting in the same price as Gemini 1.5 Flash) in exchange for the results being delayed by up to 24 hours.

Worth noting that Gemini 1.5 Flash is more multi-modal than the other models: it can handle text, images, video and audio.

Also in today's announcement:

PDF Vision and Text understanding

The Gemini API and AI Studio now support PDF understanding through both text and vision. If your PDF includes graphs, images, or other non-text visual content, the model uses native multi-modal capabilities to process the PDF. You can try this out via Google AI Studio or in the Gemini API.

This is huge. Most models that accept PDFs do so by extracting text directly from the files (see previous notes), without using OCR. It sounds like Gemini can now handle PDFs as if they were a sequence of images, which should open up much more powerful general PDF workflows.

Update: it turns out Gemini also has a 50% off batch mode, so that’s 3.25c/million input tokens for batch mode 1.5 Flash!

# 8th August 2024, 10:27 pm / gemini, anthropic, claude, openai, ai, llms, google, generative-ai, vision-llms, pdf, llm-pricing

GPT-4o mini. I've been complaining about how under-powered GPT 3.5 is for the price for a while now (I made fun of it in a keynote a few weeks ago).

GPT-4o mini is exactly what I've been looking forward to.

It supports 128,000 input tokens (both images and text) and an impressive 16,000 output tokens. Most other models are still ~4,000, and Claude 3.5 Sonnet got an upgrade to 8,192 just a few days ago. This makes it a good fit for translation and transformation tasks where the expected output more closely matches the size of the input.

OpenAI show benchmarks that have it out-performing Claude 3 Haiku and Gemini 1.5 Flash, the two previous cheapest-best models.

GPT-4o mini is 15 cents per million input tokens and 60 cents per million output tokens - a 60% discount on GPT-3.5, and cheaper than Claude 3 Haiku's 25c/125c and Gemini 1.5 Flash's 35c/70c. Or you can use the OpenAI batch API for 50% off again, in exchange for up-to-24-hours of delay in getting the results.

It's also worth comparing these prices with GPT-4o's: at $5/million input and $15/million output GPT-4o mini is 33x cheaper for input and 25x cheaper for output!

OpenAI point out that "the cost per token of GPT-4o mini has dropped by 99% since text-davinci-003, a less capable model introduced in 2022."

One catch: weirdly, the price for image inputs is the same for both GPT-4o and GPT-4o mini - Romain Huet says:

The dollar price per image is the same for GPT-4o and GPT-4o mini. To maintain this, GPT-4o mini uses more tokens per image.

Also notable:

GPT-4o mini in the API is the first model to apply our instruction hierarchy method, which helps to improve the model's ability to resist jailbreaks, prompt injections, and system prompt extractions.

My hunch is that this still won't 100% solve the security implications of prompt injection: I imagine creative enough attackers will still find ways to subvert system instructions, and the linked paper itself concludes "Finally, our current models are likely still vulnerable to powerful adversarial attacks". It could well help make accidental prompt injection a lot less common though, which is certainly a worthwhile improvement.

# 18th July 2024, 6:11 pm / vision-llms, generative-ai, openai, ai, llms, prompt-injection, llm-pricing

Yeah, unfortunately vision prompting has been a tough nut to crack. We've found it's very challenging to improve Claude's actual "vision" through just text prompts, but we can of course improve its reasoning and thought process once it extracts info from an image.

In general, I think vision is still in its early days, although 3.5 Sonnet is noticeably better than older models.

Alex Albert, Anthropic

# 10th July 2024, 6:56 pm / ai, prompt-engineering, generative-ai, llms, anthropic, claude, vision-llms, alex-albert, claude-3-5-sonnet

Anthropic cookbook: multimodal. I'm currently on the lookout for high quality sources of information about vision LLMs, including prompting tricks for getting the most out of them.

This set of Jupyter notebooks from Anthropic (published four months ago to accompany the original Claude 3 models) is the best I've found so far. Best practices for using vision with Claude includes advice on multi-shot prompting with example, plus this interesting think step-by-step style prompt for improving Claude's ability to count the dogs in an image:

You have perfect vision and pay great attention to detail which makes you an expert at counting objects in images. How many dogs are in this picture? Before providing the answer in <answer> tags, think step by step in <thinking> tags and analyze every part of the image.

# 10th July 2024, 6:38 pm / jupyter, vision-llms, anthropic, claude, generative-ai, ai, llms

Vision language models are blind (via) A new paper exploring vision LLMs, comparing GPT-4o, Gemini 1.5 Pro, Claude 3 Sonnet and Claude 3.5 Sonnet (I'm surprised they didn't include Claude 3 Opus and Haiku, which are more interesting than Claude 3 Sonnet in my opinion).

I don't like the title and framing of this paper. They describe seven tasks that vision models have trouble with - mainly geometric analysis like identifying intersecting shapes or counting things - and use those to support the following statement:

The shockingly poor performance of four state-of-the-art VLMs suggests their vision is, at best, like of a person with myopia seeing fine details as blurry, and at worst, like an intelligent person that is blind making educated guesses.

While the failures they describe are certainly interesting, I don't think they justify that conclusion.

I've felt starved for information about the strengths and weaknesses of these vision LLMs since the good ones started becoming available last November (GPT-4 Vision at OpenAI DevDay) so identifying tasks like this that they fail at is useful. But just like pointing out an LLM can't count letters doesn't mean that LLMs are useless, these limitations of vision models shouldn't be used to declare them "blind" as a sweeping statement.

# 10th July 2024, 6:17 pm / llms, ai, generative-ai, vision-llms

Claude 3.5 Sonnet. Anthropic released a new model this morning, and I think it's likely now the single best available LLM. Claude 3 Opus was already mostly on-par with GPT-4o, and the new 3.5 Sonnet scores higher than Opus on almost all of Anthropic's internal evals.

It's also twice the speed and one fifth of the price of Opus (it's the same price as the previous Claude 3 Sonnet). To compare:

  • gpt-4o: $5/million input tokens and $15/million output
  • Claude 3.5 Sonnet: $3/million input, $15/million output
  • Claude 3 Opus: $15/million input, $75/million output

Similar to Claude 3 Haiku then, which both under-cuts and out-performs OpenAI's GPT-3.5 model.

In addition to the new model, Anthropic also added a "artifacts" feature to their Claude web interface. The most exciting part of this is that any of the Claude models can now build and then render web pages and SPAs, directly in the Claude interface.

This means you can prompt them to e.g. "Build me a web app that teaches me about mandelbrot fractals, with interactive widgets" and they'll do exactly that - I tried that prompt on Claude 3.5 Sonnet earlier and the results were spectacular (video demo).

An unsurprising note at the end of the post:

To complete the Claude 3.5 model family, we’ll be releasing Claude 3.5 Haiku and Claude 3.5 Opus later this year.

If the pricing stays consistent with Claude 3, Claude 3.5 Haiku is going to be a very exciting model indeed.

# 20th June 2024, 6:01 pm / anthropic, claude, generative-ai, ai, llms, vision-llms, claude-artifacts, claude-3-5-sonnet

Hello GPT-4o. OpenAI announced a new model today: GPT-4o, where the o stands for "omni".

It looks like this is the gpt2-chatbot we've been seeing in the Chat Arena the past few weeks.

GPT-4o doesn't seem to be a huge leap ahead of GPT-4 in terms of "intelligence" - whatever that might mean - but it has a bunch of interesting new characteristics.

First, it's multi-modal across text, images and audio as well. The audio demos from this morning's launch were extremely impressive.

ChatGPT's previous voice mode worked by passing audio through a speech-to-text model, then an LLM, then a text-to-speech for the output. GPT-4o does everything with the one model, reducing latency to the point where it can act as a live interpreter between people speaking in two different languages. It also has the ability to interpret tone of voice, and has much more control over the voice and intonation it uses in response.

It's very science fiction, and has hints of uncanny valley. I can't wait to try it out - it should be rolling out to the various OpenAI apps "in the coming weeks".

Meanwhile the new model itself is already available for text and image inputs via the API and in the Playground interface, as model ID "gpt-4o" or "gpt-4o-2024-05-13". My first impressions are that it feels notably faster than gpt-4-turbo.

This announcement post also includes examples of image output from the new model. It looks like they may have taken big steps forward in two key areas of image generation: output of text (the "Poetic typography" examples) and maintaining consistent characters across multiple prompts (the "Character design - Geary the robot" example).

The size of the vocabulary of the tokenizer - effectively the number of unique integers used to represent text - has increased to ~200,000 from ~100,000 for GPT-4 and GPT-3:5. Inputs in Gujarati use 4.4x fewer tokens, Japanese uses 1.4x fewer, Spanish uses 1.1x fewer. Previously languages other than English paid a material penalty in terms of how much text could fit into a prompt, it's good to see that effect being reduced.

Also notable: the price. OpenAI claim a 50% price reduction compared to GPT-4 Turbo. Conveniently, gpt-4o costs exactly 10x gpt-3.5: 4o is $5/million input tokens and $15/million output tokens. 3.5 is $0.50/million input tokens and $1.50/million output tokens.

(I was a little surprised not to see a price decrease there to better compete with the less expensive Claude 3 Haiku.)

The price drop is particularly notable because OpenAI are promising to make this model available to free ChatGPT users as well - the first time they've directly name their "best" model available to non-paying customers.

Tucked away right at the end of the post:

We plan to launch support for GPT-4o's new audio and video capabilities to a small group of trusted partners in the API in the coming weeks.

I'm looking forward to learning more about these video capabilities, which were hinted at by some of the live demos in this morning's presentation.

# 13th May 2024, 7:09 pm / generative-ai, openai, gpt-4, ai, llms, vision-llms

AI for Data Journalism: demonstrating what we can do with this stuff right now

Visit AI for Data Journalism: demonstrating what we can do with this stuff right now

I gave a talk last month at the Story Discovery at Scale data journalism conference hosted at Stanford by Big Local News. My brief was to go deep into the things we can use Large Language Models for right now, illustrated by a flurry of demos to help provide starting points for further conversations at the conference.

[... 6,081 words]

Gemini 1.5 Pro public preview (via) Huge release from Google: Gemini 1.5 Pro—the GPT-4 competitive model with the incredible 1 million token context length—is now available without a waitlist in 180+ countries (including the USA but not Europe or the UK as far as I can tell)... and the API is free for 50 requests/day (rate limited to 2/minute).

Beyond that you’ll need to pay—$7/million input tokens and $21/million output tokens, which is slightly less than GPT-4 Turbo and a little more than Claude 3 Sonnet.

They also announced audio input (up to 9.5 hours in a single prompt), system instruction support and a new JSON mod.

# 10th April 2024, 2:38 am / gemini, google, generative-ai, ai, llms, vision-llms, llm-pricing

Extracting data from unstructured text and images with Datasette and GPT-4 Turbo. Datasette Extract is a new Datasette plugin that uses GPT-4 Turbo (released to general availability today) and GPT-4 Vision to extract structured data from unstructured text and images.

I put together a video demo of the plugin in action today, and posted it to the Datasette Cloud blog along with screenshots and a tutorial describing how to use it.

# 9th April 2024, 11:03 pm / datasette-cloud, openai, gpt-4, ai, llms, datasette, generative-ai, projects, vision-llms

The new Claude 3 model family from Anthropic. Claude 3 is out, and comes in three sizes: Opus (the largest), Sonnet and Haiku.

Claude 3 Opus has self-reported benchmark scores that consistently beat GPT-4. This is a really big deal: in the 12+ months since the GPT-4 release no other model has consistently beat it in this way. It’s exciting to finally see that milestone reached by another research group.

The pricing model here is also really interesting. Prices here are per-million-input-tokens / per-million-output-tokens:

Claude 3 Opus: $15 / $75
Claude 3 Sonnet: $3 / $15
Claude 3 Haiku: $0.25 / $1.25

All three models have a 200,000 length context window and support image input in addition to text.

Compare with today’s OpenAI prices:

GPT-4 Turbo (128K): $10 / $30
GPT-4 8K: $30 / $60
GPT-4 32K: $60 / $120
GPT-3.5 Turbo: $0.50 / $1.50

So Opus pricing is comparable with GPT-4, more than GPT-4 Turbo and significantly cheaper than GPT-4 32K... Sonnet is cheaper than all of the GPT-4 models (including GPT-4 Turbo), and Haiku (which has not yet been released to the Claude API) will be cheaper even than GPT-3.5 Turbo.

It will be interesting to see if OpenAI respond with their own price reductions.

# 4th March 2024, 6:34 pm / anthropic, claude, generative-ai, openai, gpt-4, ai, llms, vision-llms, llm-pricing

Our next-generation model: Gemini 1.5 (via) The big news here is about context length: Gemini 1.5 (a Mixture-of-Experts model) will do 128,000 tokens in general release, available in limited preview with a 1 million token context and has shown promising research results with 10 million tokens!

1 million tokens is 700,000 words or around 7 novels—also described in the blog post as an hour of video or 11 hours of audio.

# 15th February 2024, 4:17 pm / llms, ai, google, generative-ai, gemini, vision-llms

2023

Multi-modal prompt injection image attacks against GPT-4V

Visit Multi-modal prompt injection image attacks against GPT-4V

GPT4-V is the new mode of GPT-4 that allows you to upload images as part of your conversations. It’s absolutely brilliant. It also provides a whole new set of vectors for prompt injection attacks.

[... 889 words]