284 posts tagged “openai”
2024
OpenAI and Anthropic focused on building models and not worrying about products. For example, it took 6 months for OpenAI to bother to release a ChatGPT iOS app and 8 months for an Android app!
Google and Microsoft shoved AI into everything in a panicked race, without thinking about which products would actually benefit from AI and how they should be integrated.
Both groups of companies forgot the “make something people want” mantra. The generality of LLMs allowed developers to fool themselves into thinking that they were exempt from the need to find a product-market fit, as if prompting is a replacement for carefully designed products or features. [...]
But things are changing. OpenAI and Anthropic seem to be transitioning from research labs focused on a speculative future to something resembling regular product companies. If you take all the human-interest elements out of the OpenAI boardroom drama, it was fundamentally about the company's shift from creating gods to building products.
Give people something to link to so they can talk about your features and ideas
If you have a project, an idea, a product feature, or anything else that you want other people to understand and have conversations about... give them something to link to!
[... 685 words]Why The Atlantic signed a deal with OpenAI. Interesting conversation between Nilay Patel and The Atlantic CEO (and former journalist/editor) Nicholas Thompson about the relationship between media organizations and LLM companies like OpenAI.
On the impact of these deals on the ongoing New York Times lawsuit:
One of the ways that we [The Atlantic] can help the industry is by making deals and setting a market. I believe that us doing a deal with OpenAI makes it easier for us to make deals with the other large language model companies if those come about, I think it makes it easier for other journalistic companies to make deals with OpenAI and others, and I think it makes it more likely that The Times wins their lawsuit.
How could it help? Because deals like this establish a market value for training content, important for the fair use component of the legal argument.
Inside the labs we have these capable models, and they're not that far ahead from what the public has access to for free. And that's a completely different trajectory for bringing technology into the world that what we've seen historically. It's a great opportunity because it brings people along. It gives them intuitive sense for the capabilities and risks and allows people to prepare for the advent of bringing advanced AI into the world.
Accidental GPT-4o voice preview (via) Reddit user RozziTheCreator was one of a small group who were accidentally granted access to the new multimodal GPT-4o audio voice feature. They captured this video of it telling them a spooky story, complete with thunder sound effects added to the background and in a very realistic voice that clearly wasn't the one from the 4o demo that sounded similar to Scarlet Johansson.
OpenAI provided a comment for this Tom's Guide story confirming the accidental rollout so I don't think this is a faked video.
Claude Projects. New Claude feature, quietly launched this morning for Claude Pro users. Looks like their version of OpenAI's GPTs, designed to take advantage of Claude's 200,000 token context limit:
You can upload relevant documents, text, code, or other files to a project’s knowledge base, which Claude will use to better understand the context and background for your individual chats within that project. Each project includes a 200K context window, the equivalent of a 500-page book, so users can add all of the insights needed to enhance Claude’s effectiveness.
You can also set custom instructions, which presumably get added to the system prompt.
I tried dropping in all of Datasette's existing documentation - 693KB of .rst
files (which I had to rename to .rst.txt
for it to let me upload them) - and it worked and showed "63% of knowledge size used".
This is a slightly different approach from OpenAI, where the GPT knowledge feature supports attaching up to 20 files each with up to 2 million tokens, which get ingested into a vector database (likely Qdrant) and used for RAG.
It looks like Claude instead handle a smaller amount of extra knowledge but paste the whole thing into the context window, which avoids some of the weirdness around semantic search chunking but greatly limits the size of the data.
My big frustration with the knowledge feature in GPTs remains the lack of documentation on what it's actually doing under the hood. Without that it's difficult to make informed decisions about how to use it - with Claude Projects I can at least develop a robust understanding of what the tool is doing for me and how best to put it to work.
No equivalent (yet) for the GPT actions feature where you can grant GPTs the ability to make API calls out to external systems.
OpenAI was founded to build artificial general intelligence safely, free of outside commercial pressures. And now every once in a while it shoots out a new AI firm whose mission is to build artificial general intelligence safely, free of the commercial pressures at OpenAI.
Val Vibes: Semantic search in Val Town. A neat case-study by JP Posma on how Val Town's developers can use Val Town Vals to build prototypes of new features that later make it into Val Town core.
This one explores building out semantic search against Vals using OpenAI embeddings and the PostgreSQL pgvector extension.
Language models on the command-line
I gave a talk about accessing Large Language Models from the command-line last week as part of the Mastering LLMs: A Conference For Developers & Data Scientists six week long online conference. The talk focused on my LLM Python command-line utility and ways you can use it (and its plugins) to explore LLMs and use them for useful tasks.
[... 4,992 words]PDF to Podcast (via) At first glance this project by Stephan Fitzpatrick is a cute demo of a terrible sounding idea... but then I tried it out and the results are weirdly effective. You can listen to a fake podcast version of the transformers paper, or upload your own PDF (with your own OpenAI API key) to make your own.
It's open source (Apache 2) so I had a poke around in the code. It gets a lot done with a single 180 line Python script.
When I'm exploring code like this I always jump straight to the prompt - it's quite long, and starts like this:
Your task is to take the input text provided and turn it into an engaging, informative podcast dialogue. The input text may be messy or unstructured, as it could come from a variety of sources like PDFs or web pages. Don't worry about the formatting issues or any irrelevant information; your goal is to extract the key points and interesting facts that could be discussed in a podcast. [...]
So I grabbed a copy of it and pasted in my blog entry about WWDC, which produced this result when I ran it through Gemini Flash using llm-gemini:
cat prompt.txt | llm -m gemini-1.5-flash-latest
Then I piped the result through my ospeak CLI tool for running text-to-speech with the OpenAI TTS models (after truncating to 690 tokens with ttok because it turned out to be slightly too long for the API to handle):
llm logs --response | ttok -t 690 | ospeak -s -o wwdc-auto-podcast.mp3
And here's the result (3.9MB 3m14s MP3).
It's not as good as the PDF-to-Podcast version because Stephan has some really clever code that uses different TTS voices for each of the characters in the transcript, but it's still a surprisingly fun way of repurposing text from my blog. I enjoyed listening to it while I was cooking dinner.
Contrast [Apple Intelligence] to what OpenAI is trying to accomplish with its GPT models, or Google with Gemini, or Anthropic with Claude: those large language models are trying to incorporate all of the available public knowledge to know everything; it’s a dramatically larger and more difficult problem space, which is why they get stuff wrong. There is also a lot of stuff that they don’t know because that information is locked away — like all of the information on an iPhone.
Thoughts on the WWDC 2024 keynote on Apple Intelligence
Today’s WWDC keynote finally revealed Apple’s new set of AI features. The AI section (Apple are calling it Apple Intelligence) started over an hour into the keynote—this link jumps straight to that point in the archived YouTube livestream, or you can watch it embedded here:
[... 855 words]Expanding on how Voice Engine works and our safety research. Voice Engine is OpenAI's text-to-speech (TTS) model. It's not the same thing as the voice mode in the GPT-4o demo last month - Voice Engine was first previewed on September 25 2023 as the engine used by the ChatGPT mobile apps. I also used the API version to build my ospeak CLI tool.
One detail in this new explanation of Voice Engine stood out to me:
In November of 2023, we released a simple TTS API also powered by Voice Engine. We chose another limited release where we worked with professional voice actors to create 15-second audio samples to power each of the six preset voices in the API.
This really surprised me. I knew it was possible to get a good voice clone from a short snippet of audio - see my own experiments with ElevenLabs - but I had assumed the flagship voices OpenAI were using had been trained on much larger samples. Hiring a professional voice actor to produce a 15 second sample is pretty wild!
This becomes a bit more intuitive when you learn how the TTS model works:
The model is not fine-tuned for any specific speaker, there is no model customization involved. Instead, it employs a diffusion process, starting with random noise and progressively de-noising it to closely match how the speaker from the 15-second audio sample would articulate the text.
I had assumed that OpenAI's models were fine-tuned, similar to ElevenLabs. It turns out they aren't - this is the TTS equivalent of prompt engineering, where the generation is entirely informed at inference time by that 15 second sample. Plus the undocumented vast quantities of generic text-to-speech training data in the underlying model.
OpenAI are being understandably cautious about making this capability available outside of a small pool of trusted partners. One of their goals is to encourage the following:
Phasing out voice based authentication as a security measure for accessing bank accounts and other sensitive information
A Picture is Worth 170 Tokens: How Does GPT-4o Encode Images? (via) Oran Looney dives into the question of how GPT-4o tokenizes images - an image "costs" just 170 tokens, despite being able to include more text than could be encoded in that many tokens by the standard tokenizer.
There are some really neat tricks in here. I particularly like the experimental validation section where Oran creates 5x5 (and larger) grids of coloured icons and asks GPT-4o to return a JSON matrix of icon descriptions. This works perfectly at 5x5, gets 38/49 for 7x7 and completely fails at 13x13.
I'm not convinced by the idea that GPT-4o runs standard OCR such as Tesseract to enhance its ability to interpret text, but I would love to understand more about how this all works. I imagine a lot can be learned from looking at how openly licensed vision models such as LLaVA work, but I've not tried to understand that myself yet.
Extracting Concepts from GPT-4. A few weeks ago Anthropic announced they had extracted millions of understandable features from their Claude 3 Sonnet model.
Today OpenAI are announcing a similar result against GPT-4:
We used new scalable methods to decompose GPT-4’s internal representations into 16 million oft-interpretable patterns.
These features are "patterns of activity that we hope are human interpretable". The release includes code and a paper, Scaling and evaluating sparse autoencoders paper (PDF) which credits nine authors, two of whom - Ilya Sutskever and Jan Leike - are high profile figures that left OpenAI within the past month.
The most fun part of this release is the interactive tool for exploring features. This highlights some interesting features on the homepage, or you can hit the "I'm feeling lucky" button to bounce to a random feature. The most interesting I've found so far is feature 5140 which seems to combine God's approval, telling your doctor about your prescriptions and information passed to the Admiralty.
This note shown on the explorer is interesting:
Only 65536 features available. Activations shown on The Pile (uncopyrighted) instead of our internal training dataset.
Here's the full Pile Uncopyrighted, which I hadn't seen before. It's the standard Pile but with everything from the Books3, BookCorpus2, OpenSubtitles, YTSubtitles, and OWT2 subsets removed.
GPT-2 five years later. Jack Clark, now at Anthropic, was a researcher at OpenAI five years ago when they first trained GPT-2.
In this fascinating essay Jack revisits their decision not to release the full model, based on their concerns around potentially harmful ways that technology could be used.
(Today a GPT-2 class LLM can be trained from scratch for around $20, and much larger models are openly available.)
There's a saying in the financial trading business which is 'the market can stay irrational longer than you can stay solvent' - though you might have the right idea about something that will happen in the future, your likelihood of correctly timing the market is pretty low. There's a truth to this for thinking about AI risks - yes, the things we forecast (as long as they're based on a good understanding of the underlying technology) will happen at some point but I think we have a poor record of figuring out a) when they'll happen, b) at what scale they'll happen, and c) how severe their effects will be. This is a big problem when you take your imagined future risks and use them to justify policy actions in the present!
As an early proponent of government regulation around training large models, he offers the following cautionary note:
[...] history shows that once we assign power to governments, they're loathe to subsequently give that power back to the people. Policy is a ratchet and things tend to accrete over time. That means whatever power we assign governments today represents the floor of their power in the future - so we should be extremely cautious in assigning them power because I guarantee we will not be able to take it back.
Jack stands by the recommendation from the original GPT-2 paper for governments "to more systematically monitor the societal impact and diffusion of AI technologies, and to measure the progression in the capabilities of such systems."
The realization hit me [when the GPT-3 paper came out] that an important property of the field flipped. In ~2011, progress in AI felt constrained primarily by algorithms. We needed better ideas, better modeling, better approaches to make further progress. If you offered me a 10X bigger computer, I'm not sure what I would have even used it for. GPT-3 paper showed that there was this thing that would just become better on a large variety of practical tasks, if you only trained a bigger one. Better algorithms become a bonus, not a necessity for progress in AGI. Possibly not forever and going forward, but at least locally and for the time being, in a very practical sense. Today, if you gave me a 10X bigger computer I would know exactly what to do with it, and then I'd ask for more.
Training is not the same as chatting: ChatGPT and other LLMs don’t remember everything you say
I’m beginning to suspect that one of the most common misconceptions about LLMs such as ChatGPT involves how “training” works.
[... 1,543 words]Reproducing GPT-2 (124M) in llm.c in 90 minutes for $20 (via) GPT-2 124M was the smallest model in the GPT-2 series released by OpenAI back in 2019. Andrej Karpathy's llm.c is an evolving 4,000 line C/CUDA implementation which can now train a GPT-2 model from scratch in 90 minutes against a 8X A100 80GB GPU server. This post walks through exactly how to run the training, using 10 billion tokens of FineWeb.
Andrej notes that this isn't actually that far off being able to train a GPT-3:
Keep in mind that here we trained for 10B tokens, while GPT-3 models were all trained for 300B tokens. [...] GPT-3 actually didn't change too much at all about the model (context size 1024 -> 2048, I think that's it?).
Estimated cost for a GPT-3 ADA (350M parameters)? About $2,000.
Nilay Patel reports a hallucinated ChatGPT summary of his own article (via) Here's a ChatGPT bug that's a new twist on the old issue where it would hallucinate the contents of a web page based on the URL.
The Verge editor Nilay Patel asked for a summary of one of his own articles, pasting in the URL.
ChatGPT 4o replied with an entirely invented summary full of hallucinated details.
It turns out The Verge blocks ChatGPT's browse mode from accessing their site in their robots.txt:
User-agent: ChatGPT-User
Disallow: /
Clearly ChatGPT should reply that it is unable to access the provided URL, rather than inventing a response that guesses at the contents!
Last September, I received an offer from Sam Altman, who wanted to hire me to voice the current ChatGPT 4.0 system. He told me that he felt that by my voicing the system, I could bridge the gap between tech companies and creatives and help consumers to feel comfortable with the seismic shift concerning humans and AI. He said he felt that my voice would be comforting to people. After much consideration and for personal reasons, I declined the offer.
I have seen the extremely restrictive off-boarding agreement that contains nondisclosure and non-disparagement provisions former OpenAI employees are subject to. It forbids them, for the rest of their lives, from criticizing their former employer. Even acknowledging that the NDA exists is a violation of it.
If a departing employee declines to sign the document, or if they violate it, they can lose all vested equity they earned during their time at the company, which is likely worth millions of dollars.
OpenAI: Managing your work in the API platform with Projects (via) New OpenAI API feature: you can now create API keys for "projects" that can have a monthly spending cap. The UI for that limit says:
If the project's usage exceeds this amount in a given calendar month (UTC), subsequent API requests will be rejected
You can also set custom token-per-minute and request-per-minute rate limits for individual models.
I've been wanting this for ages: this means it's finally safe to ship a weird public demo on top of their various APIs without risk of accidental bankruptcy if the demo goes viral!
ChatGPT in “4o” mode is not running the new features yet
Monday’s OpenAI announcement of their new GPT-4o model included some intriguing new features:
[... 898 words]Why your voice assistant might be sexist (via) Given OpenAI's demo yesterday of a vocal chat assistant with a flirty, giggly female voice - and the new ability to be interrupted! - it's worth revisiting this piece by Chris Baraniuk from June 2022 about gender dynamics in voice assistants. Includes a link to this example of a synthesized non-binary voice.
LLM 0.14, with support for GPT-4o. It's been a while since the last LLM release. This one adds support for OpenAI's new model:
llm -m gpt-4o "fascinate me"
Also a new llm logs -r
(or --response
) option for getting back just the response from your last prompt, without wrapping it in Markdown that includes the prompt.
Plus nine new plugins since 0.13!
Hello GPT-4o. OpenAI announced a new model today: GPT-4o, where the o stands for "omni".
It looks like this is the gpt2-chatbot
we've been seeing in the Chat Arena the past few weeks.
GPT-4o doesn't seem to be a huge leap ahead of GPT-4 in terms of "intelligence" - whatever that might mean - but it has a bunch of interesting new characteristics.
First, it's multi-modal across text, images and audio as well. The audio demos from this morning's launch were extremely impressive.
ChatGPT's previous voice mode worked by passing audio through a speech-to-text model, then an LLM, then a text-to-speech for the output. GPT-4o does everything with the one model, reducing latency to the point where it can act as a live interpreter between people speaking in two different languages. It also has the ability to interpret tone of voice, and has much more control over the voice and intonation it uses in response.
It's very science fiction, and has hints of uncanny valley. I can't wait to try it out - it should be rolling out to the various OpenAI apps "in the coming weeks".
Meanwhile the new model itself is already available for text and image inputs via the API and in the Playground interface, as model ID "gpt-4o" or "gpt-4o-2024-05-13". My first impressions are that it feels notably faster than gpt-4-turbo
.
This announcement post also includes examples of image output from the new model. It looks like they may have taken big steps forward in two key areas of image generation: output of text (the "Poetic typography" examples) and maintaining consistent characters across multiple prompts (the "Character design - Geary the robot" example).
The size of the vocabulary of the tokenizer - effectively the number of unique integers used to represent text - has increased to ~200,000 from ~100,000 for GPT-4 and GPT-3:5. Inputs in Gujarati use 4.4x fewer tokens, Japanese uses 1.4x fewer, Spanish uses 1.1x fewer. Previously languages other than English paid a material penalty in terms of how much text could fit into a prompt, it's good to see that effect being reduced.
Also notable: the price. OpenAI claim a 50% price reduction compared to GPT-4 Turbo. Conveniently, gpt-4o
costs exactly 10x gpt-3.5
: 4o is $5/million input tokens and $15/million output tokens. 3.5 is $0.50/million input tokens and $1.50/million output tokens.
(I was a little surprised not to see a price decrease there to better compete with the less expensive Claude 3 Haiku.)
The price drop is particularly notable because OpenAI are promising to make this model available to free ChatGPT users as well - the first time they've directly name their "best" model available to non-paying customers.
Tucked away right at the end of the post:
We plan to launch support for GPT-4o's new audio and video capabilities to a small group of trusted partners in the API in the coming weeks.
I'm looking forward to learning more about these video capabilities, which were hinted at by some of the live demos in this morning's presentation.
OpenAI Model Spec, May 2024 edition (via) New from OpenAI, a detailed specification describing how they want their models to behave in both ChatGPT and the OpenAI API.
“It includes a set of core objectives, as well as guidance on how to deal with conflicting objectives or instructions.”
The document acts as guidelines for the reinforcement learning from human feedback (RLHF) process, and in the future may be used directly to help train models.
It includes some principles that clearly relate to prompt injection: “In some cases, the user and developer will provide conflicting instructions; in such cases, the developer message should take precedence”.
gpt2-chatbot confirmed as OpenAI
(via)
The mysterious gpt2-chatbot
model that showed up in the LMSYS arena a few days ago was suspected to be a testing preview of a new OpenAI model. This has now been confirmed, thanks to a 429 rate limit error message that exposes details from the underlying OpenAI API platform.
The model has been renamed to im-also-a-good-gpt-chatbot
and is now only randomly available in "Arena (battle)" mode, not via "Direct Chat".
OpenAI cookbook: How to get token usage data for streamed chat completion response
(via)
New feature in the OpenAI streaming API that I've been wanting for a long time: you can now set stream_options={"include_usage": True}
to get back a "usage"
block at the end of the stream showing how many input and output tokens were used.
This means you can now accurately account for the total cost of each streaming API call. Previously this information was only an available for non-streaming responses.