774 items tagged “generative-ai”
2023
Inside the secret list of websites that make AI chatbots sound smart. Washington Post story digging into the C4 dataset—Colossal Clean Crawled Corpus, a filtered version of Common Crawl that’s often used for training large language models. They include a neat interactive tool for searching a domain to see if it’s included—TIL that simonwillison.net is the 106,649th ranked site in C4 by number of tokens, 189,767 total—0.0001% of the total token volume in C4.
LLaVA: Large Language and Vision Assistant (via) Yet another multi-modal model combining a vision model (pre-trained CLIP ViT-L/14) and a LLaMA derivative model (Vicuna). The results I get from their demo are even more impressive than MiniGPT-4. Also includes a new training dataset, LLaVA-Instruct-150K, derived from GPT-4 and subject to the same warnings about the OpenAI terms of service.
What’s in the RedPajama-Data-1T LLM training set
RedPajama is “a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens”. It’s a collaboration between Together, Ontocord.ai, ETH DS3Lab, Stanford CRFM, Hazy Research, and MILA Québec AI Institute.
[... 1,077 words]RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. With the amount of projects that have used LLaMA as a foundation model since its release two months ago—despite its non-commercial license—it’s clear that there is a strong desire for a fully openly licensed alternative.
RedPajama is a collaboration between Together, Ontocord.ai, ETH DS3Lab, Stanford CRFM, Hazy Research, and MILA Québec AI Institute aiming to build exactly that.
Step one is gathering the training data: the LLaMA paper described a 1.2 trillion token training set gathered from sources that included Wikipedia, Common Crawl, GitHub, arXiv, Stack Exchange and more.
RedPajama-Data-1T is an attempt at recreating that training set. It’s now available to download, as 2,084 separate multi-GB jsonl files—2.67TB total.
Even without a trained model, this is a hugely influential contribution to the world of open source LLMs. Any team looking to build their own LLaMA from scratch can now jump straight to the next stage, training the model.
Latest Twitter search results for “as an AI language model” (via) Searching for “as an AI language model” on Twitter reveals hundreds of bot accounts which are clearly being driven by GPT models and have been asked to generate content which occasionally trips the ethical guidelines trained into the OpenAI models.
If Twitter still had an affordable search API someone could do some incredible disinformation research on top of this, looking at which accounts are implicated, what kinds of things they are tweeting about, who they follow and retweet and so-on.
MiniGPT-4 (via) An incredible project with a poorly chosen name. A team from King Abdullah University of Science and Technology in Saudi Arabia combined Vicuna-13B (a model fine-tuned on top of Facebook’s LLaMA) with the BLIP-2 vision-language model to create a model that can conduct ChatGPT-style conversations around an uploaded image. The demo is very impressive, and the weights are available to download—45MB for MiniGPT-4, but you’ll need the much larger Vicuna and LLaMA weights as well.
How I Used Stable Diffusion and Dreambooth to Create A Painted Portrait of My Dog (via) I like posts like this that go into detail in terms of how much work it takes to deliberately get the kind of result you really want using generative AI tools. Jake Dahn trained a Dreambooth model from 40 photos of Queso—his photogenic Golden Retriever—using Replicate, then gathered the prompts from ten images he liked on Lexica and generated over 1,000 different candidate images, picked his favourite, used Draw Things img2img resizing to expand the image beyond the initial crop, then Automatic1111 inpainting to tweak the ears, then Real-ESRGAN 4x+ to upscale for the final print.
Web LLM runs the vicuna-7b Large Language Model entirely in your browser, and it’s very impressive
A month ago I asked Could you train a ChatGPT-beating model for $85,000 and run it in a browser?. $85,000 was a hypothetical training cost for LLaMA 7B plus Stanford Alpaca. “Run it in a browser” was based on the fact that Web Stable Diffusion runs a 1.9GB Stable Diffusion model in a browser, so maybe it’s not such a big leap to run a small Large Language Model there as well.
[... 2,276 words]Although fine-tuning can feel like the more natural option—training on data is how GPT learned all of its other knowledge, after all—we generally do not recommend it as a way to teach the model knowledge. Fine-tuning is better suited to teaching specialized tasks or styles, and is less reliable for factual recall. [...] In contrast, message inputs are like short-term memory. When you insert knowledge into a message, it's like taking an exam with open notes. With notes in hand, the model is more likely to arrive at correct answers.
— Ted Sanders, OpenAI
New prompt injection attack on ChatGPT web version. Markdown images can steal your chat data. An ingenious new prompt injection / data exfiltration vector from Roman Samoilenko, based on the observation that ChatGPT can render markdown images in a way that can exfiltrate data to the image hosting server by embedding it in the image URL. Roman uses a single pixel image for that, and combines it with a trick where copy events on a website are intercepted and prompt injection instructions are appended to the copied text, in order to trick the user into pasting the injection attack directly into ChatGPT.
Update: They finally started mitigating this in December 2023.
One way to avoid unspotted prediction errors is for the technology in its current state to have early and frequent contact with reality as it is iteratively developed, tested, deployed, and all the while improved. And there are creative ideas people don’t often discuss which can improve the safety landscape in surprising ways — for example, it’s easy to create a continuum of incrementally-better AIs (such as by deploying subsequent checkpoints of a given training run), which presents a safety opportunity very unlike our historical approach of infrequent major model upgrades.
Prompt injection: What’s the worst that can happen?
Activity around building sophisticated applications on top of LLMs (Large Language Models) such as GPT-3/4/ChatGPT/etc is growing like wildfire right now.
[... 2,302 words]Building LLM applications for production. Chip Huyen provides a useful, in-depth review of the challenges involved in taking an app built on top of a LLM from prototype to production, including issues such as prompt ambiguity and unpredictability, cost and latency concerns, challenges in testing and updating to new models. She also lists some promising use-cases she’s seeing for categories of application built on these tools.
Free Dolly: Introducing the World’s First Truly Open Instruction-Tuned LLM (via) Databricks released a large language model called Dolly a few weeks ago. They just released Dolly 2.0 and it is MUCH more interesting—it’s an instruction tuned 12B parameter upgrade of EleutherAI’s Pythia model. Unlike other recent instruction tuned models Databricks didn’t use a training set derived from GPT-3—instead, they recruited 5,000 employees to help put together 15,000 human-generated request/response pairs, which they have released under a Creative Commons Attribution-ShareAlike license. The model itself is a 24GB download from Hugging Face—I’ve run it slowly on a small GPU-enabled Paperspace instance, but hopefully optimized ways to run it will emerge in short order.
Graphic designers had a similar sea change ~20-25 years ago.
Flyers, restaurant menus, wedding invitations, price lists... That sort of thing was bread and butter work for most designers. Then desktop publishing happened and a large fraction of designers lost their main source of income as the work shifted to computer assisted unskilled labor.
The field still thrives today, but that simple work is gone forever.
Running Python micro-benchmarks using the ChatGPT Code Interpreter alpha
Today I wanted to understand the performance difference between two Python implementations of a mechanism to detect changes to a SQLite database schema. I rendered the difference between the two as this chart:
[... 2,939 words]AI is flooding the workplace, and workers love it. The microwave kiln pottery project I helped Natalie with gets a mention in this story about people who are putting AI tools to use.
Thoughts on AI safety in this era of increasingly powerful open source LLMs
This morning, VentureBeat published a story by Sharon Goldman: With a wave of new LLMs, open source AI is having a moment — and a red-hot debate. It covers the explosion in activity around openly available Large Language Models such as LLaMA—a trend I’ve been tracking in my own series LLMs on personal devices—and talks about their implications with respect to AI safety.
[... 781 words]The Changelog podcast: LLMs break the internet
I’m the guest on the latest episode of The Changelog podcast: LLMs break the internet. It’s a follow-up to the episode we recorded six months ago about Stable Diffusion.
[... 454 words]The progress in AI has allowed things like taking down hate speech more efficiently - and this is due entirely to large language models. Because we have large language models [...] we can do a better job than we ever could in detecting hate speech in most languages in the world. That was impossible before.
For example, if you prompt GPT-3 with "Mary had a," it usually completes the sentence with "little lamb." That's because there are probably thousands of examples of "Mary had a little lamb" in GPT-3's training data set, making it a sensible completion. But if you add more context in the prompt, such as "In the hospital, Mary had a," the result will change and return words like "baby" or "series of tests."
Why ChatGPT and Bing Chat are so good at making things up. I helped review this deep dive by Benj Edwards for Ars Technica into the hallucination/confabulation problem with ChatGPT and other LLMs, which is attracting increasing attention thanks to stories like the recent defamation complaints against ChatGPT. This article explains why this is happening and talks to various experts about potential solutions.
[On AI-assisted programming] I feel like I got a small army of competent hackers to both do my bidding and to teach me as I go. It's just pure delight and magic.
It's riding a bike downhill and playing with legos and having a great coach and finishing a project all at once.
Blinded by Analogies (via) Ethan Mollick discusses how many of the analogies we have for AI right now are hurting rather than helping our understanding, particularly with respect to LLMs.
My guess is that MidJourney has been doing a massive-scale reinforcement learning from human feedback ("RLHF") - possibly the largest ever for text-to-image.
When human users choose to upscale an image, it's because they prefer it over the alternatives. It'd be a huge waste not to use this as a reward signal - cheap to collect, and exactly aligned with what your user base wants.
The more users you have, the better RLHF you can do. And then the more users you gain.
— Jim Fan
More capable models can better recognize the specific circumstances under which they are trained. Because of this, they are more likely to learn to act as expected in precisely those circumstances while behaving competently but unexpectedly in others. This can surface in the form of problems that Perez et al. (2022) call sycophancy, where a model answers subjective questions in a way that flatters their user’s stated beliefs, and sandbagging, where models are more likely to endorse common misconceptions when their user appears to be less educated.
Eight Things to Know about Large Language Models (via) This unpublished paper by Samuel R. Bowman is succinct, readable and dense with valuable information to help understand the field of modern LLMs.
Scaling laws allow us to precisely predict some coarse-but-useful measures of how capable future models will be as we scale them up along three dimensions: the amount of data they are fed, their size (measured in parameters), and the amount of computation used to train them (measured in FLOPs). [...] Our ability to make this kind of precise prediction is unusual in the history of software and unusual even in the history of modern AI research. It is also a powerful tool for driving investment since it allows R&D teams to propose model-training projects costing many millions of dollars, with reasonable confidence that these projects will succeed at producing economically valuable systems.
From Deep Learning Foundations to Stable Diffusion. Brand new free online video course from Jeremy Howard: 30 hours of content, covering everything you need to know to implement the Stable Diffusion image generation algorithm from scratch. I previewed parts of this course back in December and it was fascinating: this field is moving so fast that some of the lectures covered papers that had been released just a few days before.
ROOTS search tool (via) BLOOM is one of the most interesting completely openly licensed language models. The ROOTS corpus is the training data that was collected for it, and this tool lets you run searches directly against that corpus. I tried searching for my own name and got an interesting insight into what it knows about me.