Simon Willison’s Weblog

Subscribe
Atom feed for claude-code

10 posts tagged “claude-code”

2025

Agentic Coding Recommendations (via) There's a ton of actionable advice on using Claude Code in this new piece from Armin Ronacher. He's getting excellent results from Go, especially having invested a bunch of work in making the various tools (linters, tests, logs, development servers etc) as accessible as possible through documenting them in a Makefile.

I liked this tip on logging:

In general logging is super important. For instance my app currently has a sign in and register flow that sends an email to the user. In debug mode (which the agent runs in), the email is just logged to stdout. This is crucial! It allows the agent to complete a full sign-in with a remote controlled browser without extra assistance. It knows that emails are being logged thanks to a CLAUDE.md instruction and it automatically consults the log for the necessary link to click.

Armin also recently shared a half hour YouTube video in which he worked with Claude Code to resolve two medium complexity issues in his minijinja Rust templating library, resulting in PR #805 and PR #804.

# 12th June 2025, 4:20 pm / go, ai, llms, rust, ai-assisted-programming, coding-agents, generative-ai, armin-ronacher, anthropic, claude, claude-code

claude-trace (via) I've been thinking for a while it would be interesting to run some kind of HTTP proxy against the Claude Code CLI app and take a peek at how it works.

Mario Zechner just published a really nice version of that. It works by monkey-patching global.fetch and the Node HTTP library and then running Claude Code using Node with an extra --require interceptor-loader.js option to inject the patches.

Provided you have Claude Code installed and configured already, an easy way to run it is via npx like this:

npx @mariozechner/claude-trace --include-all-requests

I tried it just now and it logs request/response pairs to a .claude-trace folder, as both jsonl files and HTML.

The HTML interface is really nice. Here's an example trace - I started everything running in my llm checkout and asked Claude to "tell me about this software" and then "Use your agent tool to figure out where the code for storing API keys lives".

Web-based debug log interface showing a conversation trace where USER asks "Use your agent tool to figure out where the code for storing API keys lives", followed by ASSISTANT invoking dispatch_agent with a search prompt, then a Tool Result showing partial text about API key management functionality locations, and a Raw Tool Call section displaying the full JSON request with tool_use details including id, name, input prompt, and cache_control settings. The assistant concludes that key functionality is in cli.py with keys stored securely in keys.json in the user directory, manageable via commands like llm keys set openai and llm keys list.

I specifically requested the "agent" tool here because I noticed in the tool definitions a tool called dispatch_agent with this tool definition (emphasis mine):

Launch a new agent that has access to the following tools: GlobTool, GrepTool, LS, View, ReadNotebook. When you are searching for a keyword or file and are not confident that you will find the right match on the first try, use the Agent tool to perform the search for you. For example:

  • If you are searching for a keyword like "config" or "logger", the Agent tool is appropriate
  • If you want to read a specific file path, use the View or GlobTool tool instead of the Agent tool, to find the match more quickly
  • If you are searching for a specific class definition like "class Foo", use the GlobTool tool instead, to find the match more quickly

Usage notes:

  1. Launch multiple agents concurrently whenever possible, to maximize performance; to do that, use a single message with multiple tool uses
  2. When the agent is done, it will return a single message back to you. The result returned by the agent is not visible to the user. To show the user the result, you should send a text message back to the user with a concise summary of the result.
  3. Each agent invocation is stateless. You will not be able to send additional messages to the agent, nor will the agent be able to communicate with you outside of its final report. Therefore, your prompt should contain a highly detailed task description for the agent to perform autonomously and you should specify exactly what information the agent should return back to you in its final and only message to you.
  4. The agent's outputs should generally be trusted
  5. IMPORTANT: The agent can not use Bash, Replace, Edit, NotebookEditCell, so can not modify files. If you want to use these tools, use them directly instead of going through the agent.

I'd heard that Claude Code uses the LLMs-calling-other-LLMs pattern - one of the reason it can burn through tokens so fast! It was interesting to see how this works under the hood - it's a tool call which is designed to be used concurrently (by triggering multiple tool uses at once).

Anthropic have deliberately chosen not to publish any of the prompts used by Claude Code. As with other hidden system prompts, the prompts themselves mainly act as a missing manual for understanding exactly what these tools can do for you and how they work.

# 2nd June 2025, 5:57 pm / anthropic, claude, ai-agents, ai, llms, prompt-engineering, ai-assisted-programming, generative-ai, claude-code, coding-agents

I'm helping make some changes to a large, complex and very unfamiliar to me WordPress site. It's a perfect opportunity to try out Claude Code running against the new Claude 4 models.

It's going extremely well. So far Claude has helped get MySQL working on an older laptop (fixing some inscrutable Homebrew errors), disabled a CAPTCHA plugin that didn't work on localhost, toggled visible warnings on and off several times and figured out which CSS file to modify in the theme that the site is using. It even took a reasonable stab at making the site responsive on mobile!

I'm now calling Claude Code honey badger on account of its voracious appetite for crunching through code (and tokens) looking for the right thing to fix.

I got ChatGPT to make me some fan art:

Logo for Claude Code - has that text on it and a orange shaded vector art style honey badger looking a bit mean, all in Anthropic orange.

# 23rd May 2025, 6:22 pm / homebrew, wordpress, claude, anthropic, llms, ai, generative-ai, claude-4, ai-assisted-programming, coding-agents, claude-code

Claude Code: Best practices for agentic coding (via) Extensive new documentation from Anthropic on how to get the best results out of their Claude Code CLI coding agent tool, which includes this fascinating tip:

We recommend using the word "think" to trigger extended thinking mode, which gives Claude additional computation time to evaluate alternatives more thoroughly. These specific phrases are mapped directly to increasing levels of thinking budget in the system: "think" < "think hard" < "think harder" < "ultrathink." Each level allocates progressively more thinking budget for Claude to use.

Apparently ultrathink is a magic word!

I was curious if this was a feature of the Claude model itself or Claude Code in particular. Claude Code isn't open source but you can view the obfuscated JavaScript for it, and make it a tiny bit less obfuscated by running it through Prettier. With Claude's help I used this recipe:

mkdir -p /tmp/claude-code-examine
cd /tmp/claude-code-examine
npm init -y
npm install @anthropic-ai/claude-code
cd node_modules/@anthropic-ai/claude-code
npx prettier --write cli.js

Then used ripgrep to search for "ultrathink":

rg ultrathink -C 30

And found this chunk of code:

let B = W.message.content.toLowerCase();
if (
  B.includes("think harder") ||
  B.includes("think intensely") ||
  B.includes("think longer") ||
  B.includes("think really hard") ||
  B.includes("think super hard") ||
  B.includes("think very hard") ||
  B.includes("ultrathink")
)
  return (
    l1("tengu_thinking", { tokenCount: 31999, messageId: Z, provider: G }),
    31999
  );
if (
  B.includes("think about it") ||
  B.includes("think a lot") ||
  B.includes("think deeply") ||
  B.includes("think hard") ||
  B.includes("think more") ||
  B.includes("megathink")
)
  return (
    l1("tengu_thinking", { tokenCount: 1e4, messageId: Z, provider: G }), 1e4
  );
if (B.includes("think"))
  return (
    l1("tengu_thinking", { tokenCount: 4000, messageId: Z, provider: G }),
    4000
  );

So yeah, it looks like "ultrathink" is a Claude Code feature - presumably that 31999 is a number that affects the token thinking budget, especially since "megathink" maps to 1e4 tokens (10,000) and just plain "think" maps to 4,000.

# 19th April 2025, 10:17 pm / anthropic, claude, ai-assisted-programming, llm-reasoning, generative-ai, ai, llms, cli, claude-code, coding-agents

openai/codex. Just released by OpenAI, a "lightweight coding agent that runs in your terminal". Looks like their version of Claude Code, though unlike Claude Code Codex is released under an open source (Apache 2) license.

Here's the main prompt that runs in a loop, which starts like this:

You are operating as and within the Codex CLI, a terminal-based agentic coding assistant built by OpenAI. It wraps OpenAI models to enable natural language interaction with a local codebase. You are expected to be precise, safe, and helpful.

You can:
- Receive user prompts, project context, and files.
- Stream responses and emit function calls (e.g., shell commands, code edits).
- Apply patches, run commands, and manage user approvals based on policy.
- Work inside a sandboxed, git-backed workspace with rollback support.
- Log telemetry so sessions can be replayed or inspected later.
- More details on your functionality are available at codex --help

The Codex CLI is open-sourced. Don't confuse yourself with the old Codex language model built by OpenAI many moons ago (this is understandably top of mind for you!). Within this context, Codex refers to the open-source agentic coding interface. [...]

I like that the prompt describes OpenAI's previous Codex language model as being from "many moons ago". Prompt engineering is so weird.

Since the prompt says that it works "inside a sandboxed, git-backed workspace" I went looking for the sandbox. On macOS it uses the little-known sandbox-exec process, part of the OS but grossly under-documented. The best information I've found about it is this article from 2020, which notes that man sandbox-exec lists it as deprecated. I didn't spot evidence in the Codex code of sandboxes for other platforms.

# 16th April 2025, 5:25 pm / ai-assisted-programming, generative-ai, ai-agents, openai, ai, llms, open-source, prompt-engineering, sandboxing, macos, cli, coding-agents, claude-code

I started using Claude and Claude Code a bit in my regular workflow. I’ll skip the suspense and just say that the tool is way more capable than I would ever have expected. The way I can use it to interrogate a large codebase, or generate unit tests, or even “refactor every callsite to use such-and-such pattern” is utterly gobsmacking. [...]

Here’s the main problem I’ve found with generative AI, and with “vibe coding” in general: it completely sucks out the joy of software development for me. [...]

This is how I feel using gen-AI: like a babysitter. It spits out reams of code, I read through it and try to spot the bugs, and then we repeat.

Nolan Lawson, AI ambivalence

# 3rd April 2025, 1:56 am / ai-assisted-programming, claude, generative-ai, ai, llms, nolan-lawson, claude-code, coding-agents

Anthropic API: Text editor tool (via) Anthropic released a new "tool" today for text editing. It looks similar to the tool they offered as part of their computer use beta API, and the trick they've been using for a while in both Claude Artifacts and the new Claude Code to more efficiently edit files there.

The new tool requires you to implement several commands:

  • view - to view a specified file - either the whole thing or a specified range
  • str_replace - execute an exact string match replacement on a file
  • create - create a new file with the specified contents
  • insert - insert new text after a specified line number
  • undo_edit - undo the last edit made to a specific file

Providing implementations of these commands is left as an exercise for the developer.

Once implemented, you can have conversations with Claude where it knows that it can request the content of existing files, make modifications to them and create new ones.

There's quite a lot of assembly required to start using this. I tried vibe coding an implementation by dumping a copy of the documentation into Claude itself but I didn't get as far as a working program - it looks like I'd need to spend a bunch more time on that to get something to work, so my effort is currently abandoned.

This was introduced as in a post on Token-saving updates on the Anthropic API, which also included a simplification of their token caching API and a new Token-efficient tool use (beta) where sending a token-efficient-tools-2025-02-19 beta header to Claude 3.7 Sonnet can save 14-70% of the tokens needed to define tools and schemas.

# 13th March 2025, 8:53 pm / anthropic, claude, llm-tool-use, ai, llms, claude-artifacts, ai-assisted-programming, generative-ai, vibe-coding, claude-code, coding-agents

Here’s how I use LLMs to help me write code

Visit Here's how I use LLMs to help me write code

Online discussions about using Large Language Models to help write code inevitably produce comments from developers who’s experiences have been disappointing. They often ask what they’re doing wrong—how come some people are reporting such great results when their own experiments have proved lacking?

[... 5,178 words]

I've been using Claude Code for a couple of days, and it has been absolutely ruthless in chewing through legacy bugs in my gnarly old code base. It's like a wood chipper fueled by dollars. It can power through shockingly impressive tasks, using nothing but chat. [...]

Claude Code's form factor is clunky as hell, it has no multimodal support, and it's hard to juggle with other tools. But it doesn't matter. It might look antiquated but it makes Cursor, Windsurf, Augment and the rest of the lot (yeah, ours too, and Copilot, let's be honest) FEEL antiquated.

Steve Yegge, who works on Cody at Sourcegraph

# 9th March 2025, 3:30 pm / steve-yegge, anthropic, claude, ai-assisted-programming, generative-ai, ai, llms, claude-code, coding-agents

Claude 3.7 Sonnet and Claude Code. Anthropic released Claude 3.7 Sonnet today - skipping the name "Claude 3.6" because the Anthropic user community had already started using that as the unofficial name for their October update to 3.5 Sonnet.

As you may expect, 3.7 Sonnet is an improvement over 3.5 Sonnet - and is priced the same, at $3/million tokens for input and $15/m output.

The big difference is that this is Anthropic's first "reasoning" model - applying the same trick that we've now seen from OpenAI o1 and o3, Grok 3, Google Gemini 2.0 Thinking, DeepSeek R1 and Qwen's QwQ and QvQ. The only big model families without an official reasoning model now are Mistral and Meta's Llama.

I'm still working on adding support to my llm-anthropic plugin but I've got enough working code that I was able to get it to draw me a pelican riding a bicycle. Here's the non-reasoning model:

A very good attempt

And here's that same prompt but with "thinking mode" enabled:

A very good attempt

Here's the transcript for that second one, which mixes together the thinking and the output tokens. I'm still working through how best to differentiate between those two types of token.

Claude 3.7 Sonnet has a training cut-off date of Oct 2024 - an improvement on 3.5 Haiku's July 2024 - and can output up to 64,000 tokens in thinking mode (some of which are used for thinking tokens) and up to 128,000 if you enable a special header:

Claude 3.7 Sonnet can produce substantially longer responses than previous models with support for up to 128K output tokens (beta)---more than 15x longer than other Claude models. This expanded capability is particularly effective for extended thinking use cases involving complex reasoning, rich code generation, and comprehensive content creation.

This feature can be enabled by passing an anthropic-beta header of output-128k-2025-02-19.

Anthropic's other big release today is a preview of Claude Code - a CLI tool for interacting with Claude that includes the ability to prompt Claude in terminal chat and have it read and modify files and execute commands. This means it can both iterate on code and execute tests, making it an extremely powerful "agent" for coding assistance.

Here's Anthropic's documentation on getting started with Claude Code, which uses OAuth (a first for Anthropic's API) to authenticate against your API account, so you'll need to configure billing.

Short version:

npm install -g @anthropic-ai/claude-code
claude

It can burn a lot of tokens so don't be surprised if a lengthy session with it adds up to single digit dollars of API spend.

# 24th February 2025, 8:25 pm / llm, anthropic, claude, ai-agents, llm-reasoning, ai, llms, ai-assisted-programming, generative-ai, pelican-riding-a-bicycle, oauth, llm-release, cli, coding-agents, claude-code