138 posts tagged “anthropic”
2024
llm-claude-3. I built a new plugin for LLM—my command-line tool and Python library for interacting with Large Language Models—which adds support for the new Claude 3 models from Anthropic.
The new Claude 3 model family from Anthropic. Claude 3 is out, and comes in three sizes: Opus (the largest), Sonnet and Haiku.
Claude 3 Opus has self-reported benchmark scores that consistently beat GPT-4. This is a really big deal: in the 12+ months since the GPT-4 release no other model has consistently beat it in this way. It’s exciting to finally see that milestone reached by another research group.
The pricing model here is also really interesting. Prices here are per-million-input-tokens / per-million-output-tokens:
Claude 3 Opus: $15 / $75
Claude 3 Sonnet: $3 / $15
Claude 3 Haiku: $0.25 / $1.25
All three models have a 200,000 length context window and support image input in addition to text.
Compare with today’s OpenAI prices:
GPT-4 Turbo (128K): $10 / $30
GPT-4 8K: $30 / $60
GPT-4 32K: $60 / $120
GPT-3.5 Turbo: $0.50 / $1.50
So Opus pricing is comparable with GPT-4, more than GPT-4 Turbo and significantly cheaper than GPT-4 32K... Sonnet is cheaper than all of the GPT-4 models (including GPT-4 Turbo), and Haiku (which has not yet been released to the Claude API) will be cheaper even than GPT-3.5 Turbo.
It will be interesting to see if OpenAI respond with their own price reductions.
Talking about Open Source LLMs on Oxide and Friends
I recorded an episode of the Oxide and Friends podcast on Monday, talking with Bryan Cantrill and Adam Leventhal about Open Source LLMs.
[... 1,995 words]2023
Long context prompting for Claude 2.1. Claude 2.1 has a 200,000 token context, enough for around 500 pages of text. Convincing it to answer a question based on a single sentence buried deep within that content can be difficult, but Anthropic found that adding “Assistant: Here is the most relevant sentence in the context:” to the end of the prompt was enough to raise Claude 2.1’s score from 27% to 98% on their evaluation.
Claude: How to use system prompts. Documentation for the new system prompt support added in Claude 2.1. The design surprises me a little: the system prompt is just the text that comes before the first instance of the text “Human: ...”—but Anthropic promise that instructions in that section of the prompt will be treated differently and followed more closely than any instructions that follow.
This whole page of documentation is giving me some pretty serious prompt injection red flags to be honest. Anthropic’s recommended way of using their models is entirely based around concatenating together strings of text using special delimiter phrases.
I’ll give it points for honesty though. OpenAI use JSON to field different parts of the prompt, but under the hood they’re all concatenated together with special tokens into a single token stream.
Introducing Claude 2.1. Anthropic’s Claude used to have the longest token context of any of the major models: 100,000 tokens, which is about 300 pages. Then GPT-4 Turbo came out with 128,000 tokens and Claude lost one of its key differentiators.
Claude is back! Version 2.1, announced today, bumps the token limit up to 200,000—and also adds support for OpenAI-style system prompts, a feature I’ve been really missing.
They also announced tool use, but that’s only available for a very limited set of partners to preview at the moment.
Deciphering clues in a news article to understand how it was reported
Written journalism is full of conventions that hint at the underlying reporting process, many of which are not entirely obvious. Learning how to read and interpret these can help you get a lot more out of the news.
[... 1,456 words]Before Altman’s Ouster, OpenAI’s Board Was Divided and Feuding. This is the first piece of reporting I’ve seen on the OpenAI situation which has offered a glimmer of an explanation as to what happened.
It sounds like the board had been fighting about things for over a year—notably including who should replace departed members, which is how they’d shrunk down to just six people.
There’s also an interesting detail in here about the formation of Anthropic:
“Mr. Sutskever’s frustration with Mr. Altman echoed what had happened in 2021 when another senior A.I. scientist left OpenAI to form the company Anthropic. That scientist and other researchers went to the board to try to push Mr. Altman out. After they failed, they gave up and departed, according to three people familiar with the attempt to push Mr. Altman out.”
Claude was trained on data up until December 2022, but may know some events into early 2023.
Decomposing Language Models Into Understandable Components. Anthropic appear to have made a major breakthrough with respect to the interpretability of Large Language Models:
“[...] we outline evidence that there are better units of analysis than individual neurons, and we have built machinery that lets us find these units in small transformer models. These units, called features, correspond to patterns (linear combinations) of neuron activations. This provides a path to breaking down complex neural networks into parts we can understand”
The AI-assistant wars heat up with Claude Pro, a new ChatGPT Plus rival. I'm quoted in this piece about the new Claude Pro $20/month subscription from Anthropic:
Willison has also run into problems with Claude's morality filter, which has caused him trouble by accident: "I tried to use it against a transcription of a podcast episode, and it processed most of the text before—right in front of my eyes—it deleted everything it had done! I eventually figured out that they had started talking about bomb threats against data centers towards the end of the episode, and Claude effectively got triggered by that and deleted the entire transcript."
How I make annotated presentations
Giving a talk is a lot of work. I go by a rule of thumb I learned from Damian Conway: a minimum of ten hours of preparation for every one hour spent on stage.
[... 2,128 words]Catching up on the weird world of LLMs
I gave a talk on Sunday at North Bay Python where I attempted to summarize the last few years of development in the space of LLMs—Large Language Models, the technology behind tools like ChatGPT, Google Bard and Llama 2.
[... 10,489 words]Not every conversation I had at Anthropic revolved around existential risk. But dread was a dominant theme. At times, I felt like a food writer who was assigned to cover a trendy new restaurant, only to discover that the kitchen staff wanted to talk about nothing but food poisoning.
claude.ai. Anthropic’s new Claude 2 model is available to use online, and it has a 100k token context window and the ability to upload files to it—I tried uploading a text file with 34,000 tokens in it (according to my ttok CLI tool, counting using the GPT-3.5 tokenizer) and it gave me a workable summary.
My LLM CLI tool now supports self-hosted language models via plugins
LLM is my command-line utility and Python library for working with large language models such as GPT-4. I just released version 0.5 with a huge new feature: you can now install plugins that add support for additional models to the tool, including models that can run on your own hardware.
[... 1,656 words]It’s infuriatingly hard to understand how closed models train on their input
One of the most common concerns I see about large language models regards their training data. People are worried that anything they say to ChatGPT could be memorized by it and spat out to other users. People are concerned that anything they store in a private repository on GitHub might be used as training data for future versions of Copilot.
[... 1,465 words]ChatGPT should include inline tips
In OpenAI isn’t doing enough to make ChatGPT’s limitations clear James Vincent argues that OpenAI’s existing warnings about ChatGPT’s confounding ability to convincingly make stuff up are not effective.
[... 1,488 words]