Simon Willison’s Weblog

Subscribe
Atom feed for inference-scaling

16 items tagged “inference-scaling”

Improving performance of LLMs through inference - spending more tokens "thinking" about a problem, as seen in OpenAI's o1 and Qwen's QwQ.

2025

DeepSeek-R1 and exploring DeepSeek-R1-Distill-Llama-8B

Visit DeepSeek-R1 and exploring DeepSeek-R1-Distill-Llama-8B

DeepSeek are the Chinese AI lab who dropped the best currently available open weights LLM on Christmas day, DeepSeek v3. That model was trained in part using their unreleased R1 “reasoning” model. Today they’ve released R1 itself, along with a whole family of new models derived from that base.

[... 953 words]

[...] much of the point of a model like o1 is not to deploy it, but to generate training data for the next model. Every problem that an o1 solves is now a training data point for an o3 (eg. any o1 session which finally stumbles into the right answer can be refined to drop the dead ends and produce a clean transcript to train a more refined intuition).

gwern

# 16th January 2025, 7:21 pm / o1, generative-ai, inference-scaling, ai, llms, training-data

I don't think people really appreciate how simple ARC-AGI-1 was, and what solving it really means.

It was designed as the simplest, most basic assessment of fluid intelligence possible. Failure to pass signifies a near-total inability to adapt or problem-solve in unfamiliar situations.

Passing it means your system exhibits non-zero fluid intelligence -- you're finally looking at something that isn't pure memorized skill. But it says rather little about how intelligent your system is, or how close to human intelligence it is.

François Chollet

# 6th January 2025, 3:04 am / o1, evals, generative-ai, inference-scaling, francois-chollet, ai, llms

2024

Things we learned about LLMs in 2024

Visit Things we learned about LLMs in 2024

A lot has happened in the world of Large Language Models over the course of 2024. Here’s a review of things we figured out about the field in the past twelve months, plus my attempt at identifying key themes and pivotal moments.

[... 7,481 words]

Trying out QvQ—Qwen’s new visual reasoning model

Visit Trying out QvQ - Qwen's new visual reasoning model

I thought we were done for major model releases in 2024, but apparently not: Alibaba’s Qwen team just dropped the Apache 2.0 licensed Qwen licensed (the license changed) QvQ-72B-Preview, “an experimental research model focusing on enhancing visual reasoning capabilities”.

[... 1,838 words]

There’s been a lot of strange reporting recently about how ‘scaling is hitting a wall’ – in a very narrow sense this is true in that larger models were getting less score improvement on challenging benchmarks than their predecessors, but in a larger sense this is false – techniques like those which power O3 means scaling is continuing (and if anything the curve has steepened), you just now need to account for scaling both within the training of the model and in the compute you spend on it once trained.

Jack Clark

# 23rd December 2024, 3:34 pm / jack-clark, generative-ai, inference-scaling, o3, ai, llms

OpenAI o3 breakthrough high score on ARC-AGI-PUB. François Chollet is the co-founder of the ARC Prize and had advanced access to today's o3 results. His article here is the most insightful coverage I've seen of o3, going beyond just the benchmark results to talk about what this all means for the field in general.

One fascinating detail: it cost $6,677 to run o3 in "high efficiency" mode against the 400 public ARC-AGI puzzles for a score of 82.8%, and an undisclosed amount of money to run the "low efficiency" mode model to score 91.5%. A note says:

o3 high-compute costs not available as pricing and feature availability is still TBD. The amount of compute was roughly 172x the low-compute configuration.

So we can get a ballpark estimate here in that 172 * $6,677 = $1,148,444!

Here's how François explains the likely mechanisms behind o3, which reminds me of how a brute-force chess computer might work.

For now, we can only speculate about the exact specifics of how o3 works. But o3's core mechanism appears to be natural language program search and execution within token space – at test time, the model searches over the space of possible Chains of Thought (CoTs) describing the steps required to solve the task, in a fashion perhaps not too dissimilar to AlphaZero-style Monte-Carlo tree search. In the case of o3, the search is presumably guided by some kind of evaluator model. To note, Demis Hassabis hinted back in a June 2023 interview that DeepMind had been researching this very idea – this line of work has been a long time coming.

So while single-generation LLMs struggle with novelty, o3 overcomes this by generating and executing its own programs, where the program itself (the CoT) becomes the artifact of knowledge recombination. Although this is not the only viable approach to test-time knowledge recombination (you could also do test-time training, or search in latent space), it represents the current state-of-the-art as per these new ARC-AGI numbers.

Effectively, o3 represents a form of deep learning-guided program search. The model does test-time search over a space of "programs" (in this case, natural language programs – the space of CoTs that describe the steps to solve the task at hand), guided by a deep learning prior (the base LLM). The reason why solving a single ARC-AGI task can end up taking up tens of millions of tokens and cost thousands of dollars is because this search process has to explore an enormous number of paths through program space – including backtracking.

I'm not sure if o3 (and o1 and similar models) even qualifies as an LLM any more - there's clearly a whole lot more going on here than just next-token prediction.

On the question of if o3 should qualify as AGI (whatever that might mean):

Passing ARC-AGI does not equate to achieving AGI, and, as a matter of fact, I don't think o3 is AGI yet. o3 still fails on some very easy tasks, indicating fundamental differences with human intelligence.

Furthermore, early data points suggest that the upcoming ARC-AGI-2 benchmark will still pose a significant challenge to o3, potentially reducing its score to under 30% even at high compute (while a smart human would still be able to score over 95% with no training).

The post finishes with examples of the puzzles that o3 didn't manage to solve, including this one which reassured me that I can still solve at least some puzzles that couldn't be handled with thousands of dollars of GPU compute!

A puzzle with colored squares, where drawing a line between the single blue squares and turning any intersected rectangles blue is clearly the solution.

# 20th December 2024, 10:17 pm / inference-scaling, generative-ai, openai, o3, francois-chollet, ai, llms

OpenAI's new o3 system - trained on the ARC-AGI-1 Public Training set - has scored a breakthrough 75.7% on the Semi-Private Evaluation set at our stated public leaderboard $10k compute limit. A high-compute (172x) o3 configuration scored 87.5%.

This is a surprising and important step-function increase in AI capabilities, showing novel task adaptation ability never seen before in the GPT-family models. For context, ARC-AGI-1 took 4 years to go from 0% with GPT-3 in 2020 to 5% in 2024 with GPT-4o. All intuition about AI capabilities will need to get updated for o3.

François Chollet, Co-founder, ARC Prize

# 20th December 2024, 7:12 pm / o1, generative-ai, inference-scaling, francois-chollet, ai, llms, openai, o3

Live blog: the 12th day of OpenAI—“Early evals for OpenAI o3”

Visit Live blog: the 12th day of OpenAI - "Early evals for OpenAI o3"

It’s the final day of OpenAI’s 12 Days of OpenAI launch series, and since I built a live blogging system a couple of months ago I’ve decided to roll it out again to provide live commentary during the half hour event, which kicks off at 10am San Francisco time.

[... 76 words]

December in LLMs has been a lot

I had big plans for December: for one thing, I was hoping to get to an actual RC of Datasette 1.0, in preparation for a full release in January. Instead, I’ve found myself distracted by a constant barrage of new LLM releases.

[... 901 words]

Gemini 2.0 Flash “Thinking mode”

Visit Gemini 2.0 Flash "Thinking mode"

Those new model releases just keep on flowing. Today it’s Google’s snappily named gemini-2.0-flash-thinking-exp, their first entrant into the o1-style inference scaling class of models. I posted about a great essay about the significance of these just this morning.

[... 569 words]

Is AI progress slowing down? (via) This piece by Arvind Narayanan, Sayash Kapoor and Benedikt Ströbl is the single most insightful essay about AI and LLMs I've seen in a long time. It's long and worth reading every inch of it - it defies summarization, but I'll try anyway.

The key question they address is the widely discussed issue of whether model scaling has stopped working. Last year it seemed like the secret to ever increasing model capabilities was to keep dumping in more data and parameters and training time, but the lack of a convincing leap forward in the two years since GPT-4 - from any of the big labs - suggests that's no longer the case.

The new dominant narrative seems to be that model scaling is dead, and “inference scaling”, also known as “test-time compute scaling” is the way forward for improving AI capabilities. The idea is to spend more and more computation when using models to perform a task, such as by having them “think” before responding.

Inference scaling is the trick introduced by OpenAI's o1 and now explored by other models such as Qwen's QwQ. It's an increasingly practical approach as inference gets more efficient and cost per token continues to drop through the floor.

But how far can inference scaling take us, especially if it's only effective for certain types of problem?

The straightforward, intuitive answer to the first question is that inference scaling is useful for problems that have clear correct answers, such as coding or mathematical problem solving. [...] In contrast, for tasks such as writing or language translation, it is hard to see how inference scaling can make a big difference, especially if the limitations are due to the training data. For example, if a model works poorly in translating to a low-resource language because it isn’t aware of idiomatic phrases in that language, the model can’t reason its way out of this.

There's a delightfully spicy section about why it's a bad idea to defer to the expertise of industry insiders:

In short, the reasons why one might give more weight to insiders’ views aren’t very important. On the other hand, there’s a huge and obvious reason why we should probably give less weight to their views, which is that they have an incentive to say things that are in their commercial interests, and have a track record of doing so.

I also enjoyed this note about how we are still potentially years behind in figuring out how to build usable applications that take full advantage of the capabilities we have today:

The furious debate about whether there is a capability slowdown is ironic, because the link between capability increases and the real-world usefulness of AI is extremely weak. The development of AI-based applications lags far behind the increase of AI capabilities, so even existing AI capabilities remain greatly underutilized. One reason is the capability-reliability gap --- even when a certain capability exists, it may not work reliably enough that you can take the human out of the loop and actually automate the task (imagine a food delivery app that only works 80% of the time). And the methods for improving reliability are often application-dependent and distinct from methods for improving capability. That said, reasoning models also seem to exhibit reliability improvements, which is exciting.

# 19th December 2024, 6:10 pm / o1, llms, ai, generative-ai, arvind-narayanan, inference-scaling

QwQ: Reflect Deeply on the Boundaries of the Unknown. Brand new openly licensed (Apache 2) model from Alibaba Cloud's Qwen team, this time clearly inspired by OpenAI's work on reasoning in o1.

I love the flowery language they use to introduce the new model:

Through deep exploration and countless trials, we discovered something profound: when given time to ponder, to question, and to reflect, the model’s understanding of mathematics and programming blossoms like a flower opening to the sun. Just as a student grows wiser by carefully examining their work and learning from mistakes, our model achieves deeper insight through patient, thoughtful analysis.

It's already available through Ollama as a 20GB download. I initially ran it like this:

ollama run qwq

This downloaded the model and started an interactive chat session. I tried the classic "how many rs in strawberry?" and got this lengthy but correct answer, which concluded:

Wait, but maybe I miscounted. Let's list them: 1. s 2. t 3. r 4. a 5. w 6. b 7. e 8. r 9. r 10. y Yes, definitely three "r"s. So, the word "strawberry" contains three "r"s.

Then I switched to using LLM and the llm-ollama plugin. I tried prompting it for Python that imports CSV into SQLite:

Write a Python function import_csv(conn, url, table_name) which acceopts a connection to a SQLite databse and a URL to a CSV file and the name of a table - it then creates that table with the right columns and imports the CSV data from that URL

It thought through the different steps in detail and produced some decent looking code.

Finally, I tried this:

llm -m qwq 'Generate an SVG of a pelican riding a bicycle'

For some reason it answered in Simplified Chinese. It opened with this:

生成一个SVG图像,内容是一只鹈鹕骑着一辆自行车。这听起来挺有趣的!我需要先了解一下什么是SVG,以及如何创建这样的图像。

Which translates (using Google Translate) to:

Generate an SVG image of a pelican riding a bicycle. This sounds interesting! I need to first understand what SVG is and how to create an image like this.

It then produced a lengthy essay discussing the many aspects that go into constructing a pelican on a bicycle - full transcript here. After a full 227 seconds of constant output it produced this as the final result.

You can tell which bit is the bicycle and which bit is the pelican. It's quite elegant.

I think that's pretty good!

# 27th November 2024, 11:59 pm / llm, ollama, generative-ai, ai, qwen, llms, edge-llms, pelican-riding-a-bicycle, inference-scaling

Solving a bug with o1-preview, files-to-prompt and LLM. I added a new feature to DJP this morning: you can now have plugins specify their middleware in terms of how it should be positioned relative to other middleware - inserted directly before or directly after django.middleware.common.CommonMiddleware for example.

At one point I got stuck with a weird test failure, and after ten minutes of head scratching I decided to pipe the entire thing into OpenAI's o1-preview to see if it could spot the problem. I used files-to-prompt to gather the code and LLM to run the prompt:

files-to-prompt **/*.py -c | llm -m o1-preview "
The middleware test is failing showing all of these - why is MiddlewareAfter repeated so many times?

['MiddlewareAfter', 'Middleware3', 'MiddlewareAfter', 'Middleware5', 'MiddlewareAfter', 'Middleware3', 'MiddlewareAfter', 'Middleware2', 'MiddlewareAfter', 'Middleware3', 'MiddlewareAfter', 'Middleware5', 'MiddlewareAfter', 'Middleware3', 'MiddlewareAfter', 'Middleware4', 'MiddlewareAfter', 'Middleware3', 'MiddlewareAfter', 'Middleware5', 'MiddlewareAfter', 'Middleware3', 'MiddlewareAfter', 'Middleware2', 'MiddlewareAfter', 'Middleware3', 'MiddlewareAfter', 'Middleware5', 'MiddlewareAfter', 'Middleware3', 'MiddlewareAfter', 'Middleware', 'MiddlewareBefore']"

The model whirled away for a few seconds and spat out an explanation of the problem - one of my middleware classes was accidentally calling self.get_response(request) in two different places.

I did enjoy how o1 attempted to reference the relevant Django documentation and then half-repeated, half-hallucinated a quote from it:

Reference: From the Django documentation on writing middleware: Each middleware component is responsible for doing some specific function. They accept the request, do something, and pass the request to the next middleware component (if needed). They can also modify the response before sending it back to the client.

This took 2,538 input tokens and 4,354 output tokens - by my calculations at $15/million input and $60/million output that prompt cost just under 30 cents.

# 25th September 2024, 6:41 pm / o1, llm, djp, openai, ai, llms, ai-assisted-programming, generative-ai, inference-scaling

o1-mini is the most surprising research result I've seen in the past year

Obviously I cannot spill the secret, but a small model getting >60% on AIME math competition is so good that it's hard to believe

Jason Wei, OpenAI

# 12th September 2024, 11:45 pm / o1, generative-ai, openai, ai, llms, inference-scaling

Notes on OpenAI’s new o1 chain-of-thought models

OpenAI released two major new preview models today: o1-preview and o1-mini (that mini one is not a preview)—previously rumored as having the codename “strawberry”. There’s a lot to understand about these models—they’re not as simple as the next step up from GPT-4o, instead introducing some major trade-offs in terms of cost and performance in exchange for improved “reasoning” capabilities.

[... 1,568 words]