Simon Willison’s Weblog

Subscribe

Quotations

Filters: Sorted by date

Graphic designers had a similar sea change ~20-25 years ago.

Flyers, restaurant menus, wedding invitations, price lists... That sort of thing was bread and butter work for most designers. Then desktop publishing happened and a large fraction of designers lost their main source of income as the work shifted to computer assisted unskilled labor.

The field still thrives today, but that simple work is gone forever.

Janne Moren

# 12th April 2023, 3:28 am / ai, ethics, generative-ai, ai-ethics

I literally lost my biggest and best client to ChatGPT today. This client is my main source of income, he’s a marketer who outsources the majority of his copy and content writing to me. Today he emailed saying that although he knows AI’s work isn’t nearly as good as mine, he can’t ignore the profit margin. [...] Please do not think you are immune to this unless you are the top 1% of writers. I just signed up for Doordash as a driver. I really wish I was kidding.

u/Ashamed_Apricot6626

# 11th April 2023, 6:20 pm / writing, ethics, chatgpt, ai, llms, ai-ethics, copywriting

My strong hunch is that the GIL does not need removing, if a) subinterpreters have their own GILs and b) an efficient way is provided to pass (some) data between subinterpreters lock free and c) we find good patterns to make working with subinterpreters work.

Armin Ronacher

# 11th April 2023, 4:47 pm / armin-ronacher, gil, python

The progress in AI has allowed things like taking down hate speech more efficiently - and this is due entirely to large language models. Because we have large language models [...] we can do a better job than we ever could in detecting hate speech in most languages in the world. That was impossible before.

Yann LeCun

# 7th April 2023, 7:32 pm / llms, ai, generative-ai

For example, if you prompt GPT-3 with "Mary had a," it usually completes the sentence with "little lamb." That's because there are probably thousands of examples of "Mary had a little lamb" in GPT-3's training data set, making it a sensible completion. But if you add more context in the prompt, such as "In the hospital, Mary had a," the result will change and return words like "baby" or "series of tests."

Benj Edwards

# 7th April 2023, 3:36 am / gpt-3, ai, llms, generative-ai, benj-edwards

Several libraries let you declare objects with type-hinted members and automatically derive validation rules and serialization/deserialization from the type hints – Pydantic is the most popular, but alternatives like msgspec are out there too. There’s also a whole new generation of web frameworks like FastAPI and Starlite which use type hints at runtime to do not just input validation and serialization/deserialization but also things like dependency injection.

Personally, I’ve seen more significant gains in productivity from those runtime usages of Python’s type hints than from any static ahead-of-time type checking, which mostly is only useful to me as documentation.

James Bennett

# 7th April 2023, 2:19 am / james-bennett, python, pydantic

Projectories have power. Power for those who are trying to invent new futures. Power for those who are trying to mobilize action to prevent certain futures. And power for those who are trying to position themselves as brokers, thought leaders, controllers of future narratives in this moment of destabilization. But the downside to these projectories is that they can also veer way off the railroad tracks into the absurd. And when the political, social, and economic stakes are high, they can produce a frenzy that has externalities that go well beyond the technology itself. That is precisely what we’re seeing right now.

danah boyd

# 7th April 2023, 2:04 am / ai, ethics, ai-ethics

[On AI-assisted programming] I feel like I got a small army of competent hackers to both do my bidding and to teach me as I go. It's just pure delight and magic.

It's riding a bike downhill and playing with legos and having a great coach and finishing a project all at once.

Matt Bateman

# 5th April 2023, 11:50 pm / productivity, llms, ai, generative-ai, ai-assisted-programming

My guess is that MidJourney has been doing a massive-scale reinforcement learning from human feedback ("RLHF") - possibly the largest ever for text-to-image.

When human users choose to upscale an image, it's because they prefer it over the alternatives. It'd be a huge waste not to use this as a reward signal - cheap to collect, and exactly aligned with what your user base wants.

The more users you have, the better RLHF you can do. And then the more users you gain.

Jim Fan

# 5th April 2023, 4:45 am / ai, generative-ai, midjourney, text-to-image

More capable models can better recognize the specific circumstances under which they are trained. Because of this, they are more likely to learn to act as expected in precisely those circumstances while behaving competently but unexpectedly in others. This can surface in the form of problems that Perez et al. (2022) call sycophancy, where a model answers subjective questions in a way that flatters their user’s stated beliefs, and sandbagging, where models are more likely to endorse common misconceptions when their user appears to be less educated.

Sam Bowman

# 5th April 2023, 3:44 am / ai, llms, generative-ai

Scaling laws allow us to precisely predict some coarse-but-useful measures of how capable future models will be as we scale them up along three dimensions: the amount of data they are fed, their size (measured in parameters), and the amount of computation used to train them (measured in FLOPs). [...] Our ability to make this kind of precise prediction is unusual in the history of software and unusual even in the history of modern AI research. It is also a powerful tool for driving investment since it allows R&D teams to propose model-training projects costing many millions of dollars, with reasonable confidence that these projects will succeed at producing economically valuable systems.

Sam Bowman

# 5th April 2023, 3:32 am / llms, ai, generative-ai, predictions

Beyond these specific legal arguments, Stability AI may find it has a “vibes” problem. The legal criteria for fair use are subjective and give judges some latitude in how to interpret them. And one factor that likely influences the thinking of judges is whether a defendant seems like a “good actor.” Google is a widely respected technology company that tends to win its copyright lawsuits. Edgier companies like Napster tend not to.

Timothy B. Lee

# 3rd April 2023, 3:38 pm / generative-ai, ai, copyright, law

You’ll often find prompt engineers come from a history, philosophy, or English language background, because it’s wordplay. You're trying to distill the essence or meaning of something into a limited number of words.

Albert Phelps

# 31st March 2023, 5:54 pm / prompt-engineering, ai, llms

I would say ChatGPT (mostly the new GPT-4 model), with a lot of hand-holding and cajoling from me, wrote 60-70% of the code (PHP, Javascript, CSS, SQL) for this AMA site. And we easily did it in a third of the time it would have taken me by myself, without having to look something up on Stack Overflow every four minutes or endlessly consulting CSS and PHP reference guides or tediously writing tests, etc. etc. etc. In fact, I never would have even embarked on building this little site-let had ChatGPT not existed...I would have done something much simpler and more manual instead. And it was a blast. I had so much fun and learned so much along the way.

Jason Kottke

# 28th March 2023, 10:36 pm / chatgpt, ai, jason-kottke, llms

By gaining mastery of language, A.I. is seizing the master key to civilization, from bank vaults to holy sepulchers.

What would it mean for humans to live in a world where a large percentage of stories, melodies, images, laws, policies and tools are shaped by nonhuman intelligence, which knows how to exploit with superhuman efficiency the weaknesses, biases and addictions of the human mind — while knowing how to form intimate relationships with human beings?

Yuval Harari, Tristan Harris and Aza Raskin

# 28th March 2023, 7:09 pm / ai, ethics, generative-ai, llms, ai-ethics

Every wave of technological innovation has been unleashed by something costly becoming cheap enough to waste. Software production has been too complex and expensive for too long, which has caused us to underproduce software for decades, resulting in immense, society-wide technical debt. This technical debt is about to contract in a dramatic, economy-wide fashion as the cost and complexity of software production collapses, releasing a wave of innovation.

Paul Kedrosky and Eric Norlin

# 27th March 2023, 5:14 pm / software-development, ai, generative-ai, llms, technical-debt, economics, ai-assisted-programming, paul-kedrosky

I think it’s likely that soon all computer users will have the ability to develop small software tools from scratch, and to describe modifications they’d like made to software they’re already using.

Geoffrey Litt

# 27th March 2023, 6:10 am / ai, generative-ai, llms, geoffrey-litt

After three decades of working with software, I'm also seeing myself learning faster using ChatGPT. So apparently it works even for us more seasoned programmers.

Salvatore Sanfilippo

# 26th March 2023, 2:55 pm / salvatore-sanfilippo, chatgpt, ai, llms

SvelteKit is written in JS and distributed as source code — no build step — and it's been miraculous for productivity. build steps make sense for apps, they make much less sense for libraries

Rich Harris

# 24th March 2023, 11:07 pm / svelte, typescript, javascript

If you ask Microsoft’s Bing chatbot if Google’s Bard chatbot has been shut down, it says yes, citing as evidence a news article that discusses a tweet in which a user asked Bard when it would be shut down and Bard said it already had, itself citing a comment from Hacker News in which someone joked about this happening, and someone else used ChatGPT to write fake news coverage about the event.

James Vincent

# 23rd March 2023, 12:10 am / bard, bing, ai, google, llms, chatgpt

GPT-4, like GPT-3 before it, has a capability overhang; at the time of release, neither OpenAI or its various deployment partners have a clue as to the true extent of GPT-4's capability surface - that's something that we'll get to collectively discover in the coming years. This also means we don't know the full extent of plausible misuses or harms.

Jack Clark

# 22nd March 2023, 12:40 am / jack-clark, generative-ai, openai, gpt-4, ai, llms

Here are some absurdly expensive things you can do on a trip to Tokyo: Buy a golden toilet. There is a toilet in Tokyo that is made of gold and costs around 10 million yen. If you are looking for a truly absurd experience, you can buy this toilet and use it for your next bowel movement. [...]

Google Bard

# 21st March 2023, 6:27 pm / ai, google, generative-ai, bard, llms

Was on a plane yesterday, studying some physics; got confused about something and I was able to solve my problem by just asking alpaca-13B—running locally on my machine—for an explanation. Felt straight-up spooky.

Andy Matuschak

# 21st March 2023, 2:45 pm / llama, ai, generative-ai, llms, andy-matuschak

As an NLP researcher I'm kind of worried about this field after 10-20 years. Feels like these oversized LLMs are going to eat up this field and I'm sitting in my chair thinking, "What's the point of my research when GPT-4 can do it better?"

Jeonghwan Kim

# 16th March 2023, 5:39 am / machine-learning, generative-ai, nlp, gpt-4, ai, llms

I expect GPT-4 will have a LOT of applications in web scraping

The increased 32,000 token limit will be large enough to send it the full DOM of most pages, serialized to HTML - then ask questions to extract data

Or... take a screenshot and use the GPT4 image input mode to ask questions about the visually rendered page instead!

Might need to dust off all of those old semantic web dreams, because the world's information is rapidly becoming fully machine readable

Me

# 16th March 2023, 1:09 am / gpt-4, scraping, semanticweb, llms

"AI" has for recent memory been a marketing term anyway. Deep learning and variations have had a good run at being what people mean when they refer to AI, probably overweighting towards big convolution based computer vision models.

Now, "AI" in people's minds means generative models.

That's it, it doesn't mean generative models are replacing CNNs, just like CNNs don't replace SVMs or regression or whatever. It's just that pop culture has fallen in love with something else.

version_five

# 15th March 2023, 9:05 pm / ai, generative-ai, llms

We call on the field to recognize that applications that aim to believably mimic humans bring risk of extreme harms. Work on synthetic human behavior is a bright line in ethical Al development, where downstream effects need to be understood and modeled in order to block foreseeable harm to society and different social groups.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, Shmargaret Shmitchell

# 15th March 2023, 3:30 pm / ai, ethics, generative-ai, llms, ai-ethics

We’ve created GPT-4, the latest milestone in OpenAI’s effort in scaling up deep learning. GPT-4 is a large multimodal model (accepting image and text inputs, emitting text outputs) that, while less capable than humans in many real-world scenarios, exhibits human-level performance on various professional and academic benchmarks. [...] We’ve spent 6 months iteratively aligning GPT-4 using lessons from our adversarial testing program as well as ChatGPT, resulting in our best-ever results (though far from perfect) on factuality, steerability, and refusing to go outside of guardrails.

OpenAI

# 14th March 2023, 5:02 pm / openai, gpt-3, ai, generative-ai, gpt-4, chatgpt, llms

We introduce Alpaca 7B, a model fine-tuned from the LLaMA 7B model on 52K instruction-following demonstrations. Alpaca behaves similarly to OpenAI’s text-davinci-003, while being surprisingly small and easy/cheap to reproduce (<600$).

Alpaca: A Strong Open-Source Instruction-Following Model

# 13th March 2023, 6:18 pm / llama, stanford, ai, generative-ai, llms, fine-tuning

I've successfully run LLaMA 7B model on my 4GB RAM Raspberry Pi 4. It's super slow about 10sec/token. But it looks we can run powerful cognitive pipelines on a cheap hardware.

Artem Andreenko

# 12th March 2023, 6:22 pm / llama, raspberry-pi, ai, generative-ai, llms