Scaling laws allow us to precisely predict some coarse-but-useful measures of how capable future models will be as we scale them up along three dimensions: the amount of data they are fed, their size (measured in parameters), and the amount of computation used to train them (measured in FLOPs). [...] Our ability to make this kind of precise prediction is unusual in the history of software and unusual even in the history of modern AI research. It is also a powerful tool for driving investment since it allows R&D teams to propose model-training projects costing many millions of dollars, with reasonable confidence that these projects will succeed at producing economically valuable systems.
Recent articles
- Datasette Enrichments: a new plugin framework for augmenting your data - 1st December 2023
- llamafile is the new best way to run a LLM on your own computer - 29th November 2023
- Prompt injection explained, November 2023 edition - 27th November 2023
- I'm on the Newsroom Robots podcast, with thoughts on the OpenAI board - 25th November 2023
- Weeknotes: DevDay, GitHub Universe, OpenAI chaos - 22nd November 2023
- Deciphering clues in a news article to understand how it was reported - 22nd November 2023