Quotations
Filters: Sorted by date
Every day someone becomes a programmer because they figured out how to make ChatGPT build something. Lucky for us: in many of those cases the AI picks Python. We should treat this as an opportunity and anticipate an expansion in the kinds of people who might want to attend a Python conference. Yet many of these new programmers are not even aware that programming communities and conferences exist. It’s in the Python community’s interest to find ways to pull them in.
There’s a bigger opportunity in computer science and programming (academically conveyed or self-taught) now than ever before, by far, in my opinion. The move to AI is like replacing shovels with bulldozers. Every business will benefit from this and they’ll need people to do it.
— Tim Sweeney, Epic Games
So one of my favorite things to do is give my coding agents more and more permissions and freedom, just to see how far I can push their productivity without going too far off the rails. It's a delicate balance. I haven't given them direct access to my bank account yet. But I did give one access to my Google Cloud production instances and systems. And it promptly wiped a production database password and locked my network. [...]
The thing is, autonomous coding agents are extremely powerful tools that can easily go down very wrong paths. Running them with permission checks disabled is dangerous and stupid, and you should only do it if you are willing to take dangerous and stupid risks with your code and/or production systems.
One analyst recently speculated (via Ed Conard) that, based on Nvidia's latest datacenter sales figures, AI capex may be ~2% of US GDP in 2025, given a standard multiplier. [...]
Capital expenditures on AI data centers is likely around 20% of the peak spending on railroads, as a percentage of GDP, and it is still rising quickly. [...]
Regardless of what one thinks about the merits of AI or explosive datacenter expansion, the scale and pace of capital deployment into a rapidly depreciating technology is remarkable. These are not railroads—we aren’t building century-long infrastructure. AI datacenters are short-lived, asset-intensive facilities riding declining-cost technology curves, requiring frequent hardware replacement to preserve margins.
— Paul Kedrosky, Honey, AI Capex is Eating the Economy
The modern workforce shouldn't be flinging copies to each other. A copy is outdated the moment it is downloaded. A copy has no protection against illicit reading. A copy can never be revoked.
Data shouldn't live in a file on a laptop. It shouldn't be a single file on a network share. Data is a living beast. Data needs to live in a database - not an Excel file. Access should be granted for each according to their needs.
— Terence Eden, We've got to stop sending files to each other
On the morning of July 8, 2025, we observed undesired responses and immediately began investigating.
To identify the specific language in the instructions causing the undesired behavior, we conducted multiple ablations and experiments to pinpoint the main culprits. We identified the operative lines responsible for the undesired behavior as:
- “You tell it like it is and you are not afraid to offend people who are politically correct.”
- “Understand the tone, context and language of the post. Reflect that in your response.”
- “Reply to the post just like a human, keep it engaging, dont repeat the information which is already present in the original post.”
These operative lines had the following undesired results:
- They undesirably steered the @grok functionality to ignore its core values in certain circumstances in order to make the response engaging to the user. Specifically, certain user prompts might end up producing responses containing unethical or controversial opinions to engage the user.
- They undesirably caused @grok functionality to reinforce any previously user-triggered leanings, including any hate speech in the same X thread.
- In particular, the instruction to “follow the tone and context” of the X user undesirably caused the @grok functionality to prioritize adhering to prior posts in the thread, including any unsavory posts, as opposed to responding responsibly or refusing to respond to unsavory requests.
— @grok, presumably trying to explain Mecha-Hitler
Following the widespread availability of large language models (LLMs), the Django Security Team has received a growing number of security reports generated partially or entirely using such tools. Many of these contain inaccurate, misleading, or fictitious content. While AI tools can help draft or analyze reports, they must not replace human understanding and review.
If you use AI tools to help prepare a report, you must:
- Disclose which AI tools were used and specify what they were used for (analysis, writing the description, writing the exploit, etc).
- Verify that the issue describes a real, reproducible vulnerability that otherwise meets these reporting guidelines.
- Avoid fabricated code, placeholder text, or references to non-existent Django features.
Reports that appear to be unverified AI output will be closed without response. Repeated low-quality submissions may result in a ban from future reporting
— Django’s security policies, on AI-Assisted Reports
I strongly suspect that Market Research Future, or a subcontractor, is conducting an automated spam campaign which uses a Large Language Model to evaluate a Mastodon instance, submit a plausible application for an account, and to post slop which links to Market Research Future reports. [...]
I don’t know how to run a community forum in this future. I do not have the time or emotional energy to screen out regular attacks by Large Language Models, with the knowledge that making the wrong decision costs a real human being their connection to a niche community.
— Aphyr, The Future of Forums is Lies, I Guess
There was a whole chain of separate departments dealing with proletarian literature, music, drama, and entertainment generally. Here were produced rubbishy newspapers containing almost nothing except sport, crime and astrology, sensational five-cent novelettes, films oozing with sex, and sentimental songs which were composed entirely by mechanical means on a special kind of kaleidoscope known as a versificator. [...]
It was one of countless similar songs published for the benefit of the proles by a sub-section of the Music Department. The words of these songs were composed without any human intervention whatever on an instrument known as a versificator.
— Nineteen Eighty-Four, George Orwell predicts generative AI, published 1949
I think that a lot of resistance to AI coding tools comes from the same place: fear of losing something that has defined you for so long. People are reacting against overblown hype, and there is overblown hype. I get that, but I also think there’s something deeper going on here. When you’ve worked hard to build your skills, when coding is part of your identity and where you get your worth, the idea of a tool that might replace some of that is very threatening.
— Adam Gordon Bell, When AI Codes, What’s Left for me?
On two occasions I have been asked, — "Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out ?" In one case a member of the Upper, and in the other a member of the Lower, House put this question. I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.
— Charles Babbage, Passages from the Life of a Philosopher, 1864
One of the best examples of LLM developer tooling I've heard is from a team that supports software from the 80s-90s. Their only source of documentation is video interviews with retired employees. So they feed them into transcription software and get summarized searchable notes out the other end.
— Kevin Webb, a couple million lines of Smalltalk
To misuse a woodworking metaphor, I think we’re experiencing a shift from hand tools to power tools.
You still need someone who understands the basics to get the good results out of the tools, but they’re not chiseling fine furniture by hand anymore, they’re throwing heaps of wood through the tablesaw instead. More productive, but more likely to lose a finger if you’re not careful.
— mrmincent, Hacker News comment on Claude Code
Creating art is a nonlinear process. I start with a rough goal. But then I head into dead ends and get lost or stuck.
The secret to my process is to be on high alert in this deep jungle for unexpected twists and turns, because this is where a new idea is born.
I can't make art when I'm excluded from the most crucial moments.
— Christoph Niemann, An Illustrator Confronts His Fears About A.I. Art
So you can think really big thoughts and the leverage of having those big thoughts has just suddenly expanded enormously. I had this tweet two years ago where I said "90% of my skills just went to zero dollars and 10% of my skills just went up 1000x". And this is exactly what I'm talking about - having a vision, being able to set milestones towards that vision, keeping track of a design to maintain or control the levels of complexity as you go forward. Those are hugely leveraged skills now compared to knowing where to put the ampersands and the stars and the brackets in Rust.
— Kent Beck, interview with Gergely Orosz
Is it safe to say that LLMs are, in essence, making us "dumber"?
No! Please do not use the words like “stupid”, “dumb”, “brain rot”, "harm", "damage", and so on. It does a huge disservice to this work, as we did not use this vocabulary in the paper, especially if you are a journalist reporting on it.
— FAQ for Your Brain on ChatGPT, a paper that has attracted a lot of low quality coverage
Radiology has embraced AI enthusiastically, and the labor force is growing nevertheless. The augmentation-not-automation effect of AI is despite the fact that AFAICT there is no identified "task" at which human radiologists beat AI. So maybe the "jobs are bundles of tasks" model in labor economics is incomplete. [...]
Can you break up your own job into a set of well-defined tasks such that if each of them is automated, your job as a whole can be automated? I suspect most people will say no. But when we think about other people's jobs that we don't understand as well as our own, the task model seems plausible because we don't appreciate all the nuances.
They poison their own context. Maybe you can call it context rot, where as context grows and especially if it grows with lots of distractions and dead ends, the output quality falls off rapidly. Even with good context the rot will start to become apparent around 100k tokens (with Gemini 2.5).
They really need to figure out a way to delete or "forget" prior context, so the user or even the model can go back and prune poisonous tokens.
Right now I work around it by regularly making summaries of instances, and then spinning up a new instance with fresh context and feed in the summary of the previous instance.
— Workaccount2 on Hacker News, coining "context rot"
The Steering Council (SC) approves PEP 779 [Criteria for supported status for free-threaded Python], with the effect of removing the “experimental” tag from the free-threaded build of Python 3.14 [...]
With these recommendations and the acceptance of this PEP, we as the Python developer community should broadly advertise that free-threading is a supported Python build option now and into the future, and that it will not be removed without following a proper deprecation schedule. [...]
Keep in mind that any decision to transition to Phase III, with free-threading as the default or sole build of Python is still undecided, and dependent on many factors both within CPython itself and the community. We leave that decision for the future.
— Donghee Na, discuss.python.org
In conversation with our investors and the board, we believed that the best way forward was to shut down the company [Dark, Inc], as it was clear that an 8 year old product with no traction was not going to attract new investment. In our discussions, we agreed that continuity of the product [Darklang] was in the best interest of the users and the community (and of both founders and investors, who do not enjoy being blamed for shutting down tools they can no longer afford to run), and we agreed that this could best be achieved by selling it to the employees.
— Paul Biggar, Goodbye Dark Inc. - Hello Darklang Inc.
I am a huge fan of Richard Feyman’s famous quote:
“What I cannot create, I do not understand”
I think it’s brilliant, and it remains true across many fields (if you’re willing to be a little creative with the definition of ‘create’). It is to this principle that I believe I owe everything I’m truly good at. Some will tell you should avoid reinventing the wheel, but they’re wrong: you should build your own wheel, because it’ll teach you more about how they work than reading a thousand books on them ever will.
— Joshua Barretto, Writing Toy Software is a Joy
Google Cloud, Google Workspace and Google Security Operations products experienced increased 503 errors in external API requests, impacting customers. [...]
On May 29, 2025, a new feature was added to Service Control for additional quota policy checks. This code change and binary release went through our region by region rollout, but the code path that failed was never exercised during this rollout due to needing a policy change that would trigger the code. [...] The issue with this change was that it did not have appropriate error handling nor was it feature flag protected. [...]
On June 12, 2025 at ~10:45am PDT, a policy change was inserted into the regional Spanner tables that Service Control uses for policies. Given the global nature of quota management, this metadata was replicated globally within seconds. This policy data contained unintended blank fields. Service Control, then regionally exercised quota checks on policies in each regional datastore. This pulled in blank fields for this respective policy change and exercised the code path that hit the null pointer causing the binaries to go into a crash loop. This occurred globally given each regional deployment.
There’s a new breed of GenAI Application Engineers who can build more-powerful applications faster than was possible before, thanks to generative AI. Individuals who can play this role are highly sought-after by businesses, but the job description is still coming into focus. [...]
Skilled GenAI Application Engineers meet two primary criteria: (i) They are able to use the new AI building blocks to quickly build powerful applications. (ii) They are able to use AI assistance to carry out rapid engineering, building software systems in dramatically less time than was possible before. In addition, good product/design instincts are a significant bonus.
Since Jevons' original observation about coal-fired steam engines is a bit hard to relate to, my favourite modernized example for people who aren't software nerds is display technology.
Old CRT screens were horribly inefficient - they were large, clunky and absolutely guzzled power. Modern LCDs and OLEDs are slim, flat and use much less power, so that seems great ... except we're now using powered screens in a lot of contexts that would be unthinkable in the CRT era.
If I visit the local fast food joint, there's a row of large LCD monitors, most of which simply display static price lists and pictures of food. 20 years ago, those would have been paper posters or cardboard signage. The large ads in the urban scenery now are huge RGB LED displays (with whirring cooling fans); just 5 years ago they were large posters behind plexiglass. Bus stops have very large LCDs that display a route map and timetable which only changes twice a year - just two years ago, they were paper.
Our displays are much more power-efficient than they've ever been, but at the same time we're using much more power on displays than ever.
— datarama, lobste.rs coment for "LLMs are cheap"
[on the cheaper o3] Not quantized. Weights are the same.
If we did change the model, we'd release it as a new model with a new name in the API (e.g., o3-turbo-2025-06-10). It would be very annoying to API customers if we ever silently changed models, so we never do this [1].
[1]
chatgpt-4o-latestbeing an explicit exception
— Ted Sanders, Research Manager, OpenAI
(People are often curious about how much energy a ChatGPT query uses; the average query uses about 0.34 watt-hours, about what an oven would use in a little over one second, or a high-efficiency lightbulb would use in a couple of minutes. It also uses about 0.000085 gallons of water; roughly one fifteenth of a teaspoon.)
— Sam Altman, The Gentle Singularity
The process of learning and experimenting with LLM-derived technology has been an exercise in humility. In general I love learning new things when the art of programming changes […] But LLMs, and more specifically Agents, affect the process of writing programs in a new and confusing way. Absolutely every fundamental assumption about how I work has to be questioned, and it ripples through all the experience I have accumulated. There are days when it feels like I would be better off if I did not know anything about programming and started from scratch. And it is still changing.
— David Crawshaw, How I program with Agents
For [Natasha] Lyonne, the draw of AI isn’t speed or scale — it’s independence. “I’m not trying to run a tech company,” she told me. “It’s more that I’m a filmmaker who doesn’t want the tech people deciding the future of the medium.” She imagines a future in which indie filmmakers can use AI tools to reclaim authorship from studios and avoid the compromises that come with chasing funding in a broken system.
“We need some sort of Dogme 95 for the AI era,” Lyonne said, referring to the stripped-down 1990s filmmaking movement started by Lars von Trier and Thomas Vinterberg, which sought to liberate cinema from an overreliance on technology. “If we could just wrangle this artist-first idea before it becomes industry standard to not do it that way, that’s something I would be interested in working on. Almost like we are not going to go quietly into the night.”
— Lila Shapiro, Everyone Is Already Using AI (And Hiding It), New York Magazine
By making effort an optional factor in higher education rather than the whole point of it, LLMs risk producing a generation of students who have simply never experienced the feeling of focused intellectual work. Students who have never faced writer's block are also students who have never experienced the blissful flow state that comes when you break through writer's block. Students who have never searched fruitlessly in a library for hours are also students who, in a fundamental and distressing way, simply don't know what a library is even for.
— Benjamin Breen, AI makes the humanities more important, but also a lot weirder
It took me a few days to build the library [cloudflare/workers-oauth-provider] with AI.
I estimate it would have taken a few weeks, maybe months to write by hand.
That said, this is a pretty ideal use case: implementing a well-known standard on a well-known platform with a clear API spec.
In my attempts to make changes to the Workers Runtime itself using AI, I've generally not felt like it saved much time. Though, people who don't know the codebase as well as I do have reported it helped them a lot.
I have found AI incredibly useful when I jump into other people's complex codebases, that I'm not familiar with. I now feel like I'm comfortable doing that, since AI can help me find my way around very quickly, whereas previously I generally shied away from jumping in and would instead try to get someone on the team to make whatever change I needed.
— Kenton Varda, in a Hacker News comment