Quotations in Jun
Filters: Type: quotation × Month: Jun × Sorted by date
Creating art is a nonlinear process. I start with a rough goal. But then I head into dead ends and get lost or stuck.
The secret to my process is to be on high alert in this deep jungle for unexpected twists and turns, because this is where a new idea is born.
I can't make art when I'm excluded from the most crucial moments.
— Christoph Niemann, An Illustrator Confronts His Fears About A.I. Art
So you can think really big thoughts and the leverage of having those big thoughts has just suddenly expanded enormously. I had this tweet two years ago where I said "90% of my skills just went to zero dollars and 10% of my skills just went up 1000x". And this is exactly what I'm talking about - having a vision, being able to set milestones towards that vision, keeping track of a design to maintain or control the levels of complexity as you go forward. Those are hugely leveraged skills now compared to knowing where to put the ampersands and the stars and the brackets in Rust.
— Kent Beck, interview with Gergely Orosz
Is it safe to say that LLMs are, in essence, making us "dumber"?
No! Please do not use the words like “stupid”, “dumb”, “brain rot”, "harm", "damage", and so on. It does a huge disservice to this work, as we did not use this vocabulary in the paper, especially if you are a journalist reporting on it.
— FAQ for Your Brain on ChatGPT, a paper that has attracted a lot of low quality coverage
Radiology has embraced AI enthusiastically, and the labor force is growing nevertheless. The augmentation-not-automation effect of AI is despite the fact that AFAICT there is no identified "task" at which human radiologists beat AI. So maybe the "jobs are bundles of tasks" model in labor economics is incomplete. [...]
Can you break up your own job into a set of well-defined tasks such that if each of them is automated, your job as a whole can be automated? I suspect most people will say no. But when we think about other people's jobs that we don't understand as well as our own, the task model seems plausible because we don't appreciate all the nuances.
They poison their own context. Maybe you can call it context rot, where as context grows and especially if it grows with lots of distractions and dead ends, the output quality falls off rapidly. Even with good context the rot will start to become apparent around 100k tokens (with Gemini 2.5).
They really need to figure out a way to delete or "forget" prior context, so the user or even the model can go back and prune poisonous tokens.
Right now I work around it by regularly making summaries of instances, and then spinning up a new instance with fresh context and feed in the summary of the previous instance.
— Workaccount2 on Hacker News, coining "context rot"
The Steering Council (SC) approves PEP 779 [Criteria for supported status for free-threaded Python], with the effect of removing the “experimental” tag from the free-threaded build of Python 3.14 [...]
With these recommendations and the acceptance of this PEP, we as the Python developer community should broadly advertise that free-threading is a supported Python build option now and into the future, and that it will not be removed without following a proper deprecation schedule. [...]
Keep in mind that any decision to transition to Phase III, with free-threading as the default or sole build of Python is still undecided, and dependent on many factors both within CPython itself and the community. We leave that decision for the future.
— Donghee Na, discuss.python.org
In conversation with our investors and the board, we believed that the best way forward was to shut down the company [Dark, Inc], as it was clear that an 8 year old product with no traction was not going to attract new investment. In our discussions, we agreed that continuity of the product [Darklang] was in the best interest of the users and the community (and of both founders and investors, who do not enjoy being blamed for shutting down tools they can no longer afford to run), and we agreed that this could best be achieved by selling it to the employees.
— Paul Biggar, Goodbye Dark Inc. - Hello Darklang Inc.
I am a huge fan of Richard Feyman’s famous quote:
“What I cannot create, I do not understand”
I think it’s brilliant, and it remains true across many fields (if you’re willing to be a little creative with the definition of ‘create’). It is to this principle that I believe I owe everything I’m truly good at. Some will tell you should avoid reinventing the wheel, but they’re wrong: you should build your own wheel, because it’ll teach you more about how they work than reading a thousand books on them ever will.
— Joshua Barretto, Writing Toy Software is a Joy
Google Cloud, Google Workspace and Google Security Operations products experienced increased 503 errors in external API requests, impacting customers. [...]
On May 29, 2025, a new feature was added to Service Control for additional quota policy checks. This code change and binary release went through our region by region rollout, but the code path that failed was never exercised during this rollout due to needing a policy change that would trigger the code. [...] The issue with this change was that it did not have appropriate error handling nor was it feature flag protected. [...]
On June 12, 2025 at ~10:45am PDT, a policy change was inserted into the regional Spanner tables that Service Control uses for policies. Given the global nature of quota management, this metadata was replicated globally within seconds. This policy data contained unintended blank fields. Service Control, then regionally exercised quota checks on policies in each regional datastore. This pulled in blank fields for this respective policy change and exercised the code path that hit the null pointer causing the binaries to go into a crash loop. This occurred globally given each regional deployment.
There’s a new breed of GenAI Application Engineers who can build more-powerful applications faster than was possible before, thanks to generative AI. Individuals who can play this role are highly sought-after by businesses, but the job description is still coming into focus. [...]
Skilled GenAI Application Engineers meet two primary criteria: (i) They are able to use the new AI building blocks to quickly build powerful applications. (ii) They are able to use AI assistance to carry out rapid engineering, building software systems in dramatically less time than was possible before. In addition, good product/design instincts are a significant bonus.
Since Jevons' original observation about coal-fired steam engines is a bit hard to relate to, my favourite modernized example for people who aren't software nerds is display technology.
Old CRT screens were horribly inefficient - they were large, clunky and absolutely guzzled power. Modern LCDs and OLEDs are slim, flat and use much less power, so that seems great ... except we're now using powered screens in a lot of contexts that would be unthinkable in the CRT era.
If I visit the local fast food joint, there's a row of large LCD monitors, most of which simply display static price lists and pictures of food. 20 years ago, those would have been paper posters or cardboard signage. The large ads in the urban scenery now are huge RGB LED displays (with whirring cooling fans); just 5 years ago they were large posters behind plexiglass. Bus stops have very large LCDs that display a route map and timetable which only changes twice a year - just two years ago, they were paper.
Our displays are much more power-efficient than they've ever been, but at the same time we're using much more power on displays than ever.
— datarama, lobste.rs coment for "LLMs are cheap"
[on the cheaper o3] Not quantized. Weights are the same.
If we did change the model, we'd release it as a new model with a new name in the API (e.g., o3-turbo-2025-06-10). It would be very annoying to API customers if we ever silently changed models, so we never do this [1].
[1]
chatgpt-4o-latest
being an explicit exception
— Ted Sanders, Research Manager, OpenAI
(People are often curious about how much energy a ChatGPT query uses; the average query uses about 0.34 watt-hours, about what an oven would use in a little over one second, or a high-efficiency lightbulb would use in a couple of minutes. It also uses about 0.000085 gallons of water; roughly one fifteenth of a teaspoon.)
— Sam Altman, The Gentle Singularity
The process of learning and experimenting with LLM-derived technology has been an exercise in humility. In general I love learning new things when the art of programming changes […] But LLMs, and more specifically Agents, affect the process of writing programs in a new and confusing way. Absolutely every fundamental assumption about how I work has to be questioned, and it ripples through all the experience I have accumulated. There are days when it feels like I would be better off if I did not know anything about programming and started from scratch. And it is still changing.
— David Crawshaw, How I program with Agents
For [Natasha] Lyonne, the draw of AI isn’t speed or scale — it’s independence. “I’m not trying to run a tech company,” she told me. “It’s more that I’m a filmmaker who doesn’t want the tech people deciding the future of the medium.” She imagines a future in which indie filmmakers can use AI tools to reclaim authorship from studios and avoid the compromises that come with chasing funding in a broken system.
“We need some sort of Dogme 95 for the AI era,” Lyonne said, referring to the stripped-down 1990s filmmaking movement started by Lars von Trier and Thomas Vinterberg, which sought to liberate cinema from an overreliance on technology. “If we could just wrangle this artist-first idea before it becomes industry standard to not do it that way, that’s something I would be interested in working on. Almost like we are not going to go quietly into the night.”
— Lila Shapiro, Everyone Is Already Using AI (And Hiding It), New York Magazine
By making effort an optional factor in higher education rather than the whole point of it, LLMs risk producing a generation of students who have simply never experienced the feeling of focused intellectual work. Students who have never faced writer's block are also students who have never experienced the blissful flow state that comes when you break through writer's block. Students who have never searched fruitlessly in a library for hours are also students who, in a fundamental and distressing way, simply don't know what a library is even for.
— Benjamin Breen, AI makes the humanities more important, but also a lot weirder
It took me a few days to build the library [cloudflare/workers-oauth-provider] with AI.
I estimate it would have taken a few weeks, maybe months to write by hand.
That said, this is a pretty ideal use case: implementing a well-known standard on a well-known platform with a clear API spec.
In my attempts to make changes to the Workers Runtime itself using AI, I've generally not felt like it saved much time. Though, people who don't know the codebase as well as I do have reported it helped them a lot.
I have found AI incredibly useful when I jump into other people's complex codebases, that I'm not familiar with. I now feel like I'm comfortable doing that, since AI can help me find my way around very quickly, whereas previously I generally shied away from jumping in and would instead try to get someone on the team to make whatever change I needed.
— Kenton Varda, in a Hacker News comment
My constant struggle is how to convince them that getting an education in the humanities is not about regurgitating ideas/knowledge that already exist. It’s about generating new knowledge, striving for creative insights, and having thoughts that haven’t been had before. I don’t want you to learn facts. I want you to think. To notice. To question. To reconsider. To challenge. Students don’t yet get that ChatGPT only rearranges preexisting ideas, whether they are accurate or not.
And even if the information was guaranteed to be accurate, they’re not learning anything by plugging a prompt in and turning in the resulting paper. They’ve bypassed the entire process of learning.
Absolutely any time I try to explore something even slightly against commonly accepted beliefs, LLMs always just rehash the commonly accepted beliefs.
As a researcher, I find this behaviour worse than unhelpful. It gives the mistaken impression that there's nothing to explore.
We argued that ChatGPT is not designed to produce true utterances; rather, it is designed to produce text which is indistinguishable from the text produced by humans. It is aimed at being convincing rather than accurate. The basic architecture of these models reveals this: they are designed to come up with a likely continuation of a string of text. It’s reasonable to assume that one way of being a likely continuation of a text is by being true; if humans are roughly more accurate than chance, true sentences will be more likely than false ones. This might make the chatbot more accurate than chance, but it does not give the chatbot any intention to convey truths. This is similar to standard cases of human bullshitters, who don’t care whether their utterances are true; good bullshit often contains some degree of truth, that’s part of what makes it convincing.
What Apple unveiled last week with Apple Intelligence wasn't so much new products, but new features—a slew of them—for existing products, powered by generative AI.
[...] These aren't new apps or new products. They're the most used, most important apps Apple makes, the core apps that define the Apple platforms ecosystem, and Apple is using generative AI to make them better and more useful—without, in any way, rendering them unfamiliar.
For some reason, many people still believe that browsers need to include non-standard hacks in HTML parsing to display the web correctly.
In reality, the HTML parsing spec is exhaustively detailed. If you implement it as described, you will have a web-compatible parser.
The people who are most confident AI can replace writers are the ones who think writing is typing.
In our “who validates the validators” user studies, we found that people expected—and also desired—for the LLM to learn from any human interaction. That too, “as efficiently as possible” (ie after 1-2 demonstrations, the LLM should “get it”)
OpenAI was founded to build artificial general intelligence safely, free of outside commercial pressures. And now every once in a while it shoots out a new AI firm whose mission is to build artificial general intelligence safely, free of the commercial pressures at OpenAI.
It is in the public good to have AI produce quality and credible (if ‘hallucinations’ can be overcome) output. It is in the public good that there be the creation of original quality, credible, and artistic content. It is not in the public good if quality, credible content is excluded from AI training and output OR if quality, credible content is not created.
One of the core constitutional principles that guides our AI model development is privacy. We do not train our generative models on user-submitted data unless a user gives us explicit permission to do so. To date we have not used any customer or user-submitted data to train our generative models.
[...] And then some absolute son of a bitch created ChatGPT, and now look at us. Look at us, resplendent in our pauper's robes, stitched from corpulent greed and breathless credulity, spending half of the planet's engineering efforts to add chatbot support to every application under the sun when half of the industry hasn't worked out how to test database backups regularly.
Most people think that we format Go code with
gofmt
to make code look nicer or to end debates among team members about program layout. But the most important reason for gofmt is that if an algorithm defines how Go source code is formatted, then programs, likegoimports
orgorename
orgo fix
, can edit the source code more easily, without introducing spurious formatting changes when writing the code back. This helps you maintain code over time.
— Russ Cox
We're adding the human touch, but that often requires a deep, developmental edit on a piece of writing. The grammar and word choice just sound weird. You're always cutting out flowery words like 'therefore' and 'nevertheless' that don't fit in casual writing. Plus, you have to fact-check the whole thing because AI just makes things up, which takes forever because it's not just big ideas. AI hallucinates these flippant little things in throwaway lines that you'd never notice. [...]
It's tedious, horrible work, and they pay you next to nothing for it.