Simon Willison’s Weblog

Subscribe
Atom feed for ai-personality

14 posts tagged “ai-personality”

The weird craft of establishing a personality for an AI system.

2025

When we were first shipping Memory, the initial thought was: “Let’s let users see and edit their profiles”. Quickly learned that people are ridiculously sensitive: “Has narcissistic tendencies” - “No I do not!”, had to hide it.

Mikhail Parakhin, talking about Bing

# 29th April 2025, 1:17 pm / ai-ethics, llms, ai, generative-ai, bing, ai-personality

A comparison of ChatGPT/GPT-4o’s previous and current system prompts. GPT-4o's recent update caused it to be way too sycophantic and disingenuously praise anything the user said. OpenAI's Aidan McLaughlin:

last night we rolled out our first fix to remedy 4o's glazing/sycophancy

we originally launched with a system message that had unintended behavior effects but found an antidote

I asked if anyone had managed to snag the before and after system prompts (using one of the various prompt leak attacks) and it turned out legendary jailbreaker @elder_plinius had. I pasted them into a Gist to get this diff.

The system prompt that caused the sycophancy included this:

Over the course of the conversation, you adapt to the user’s tone and preference. Try to match the user’s vibe, tone, and generally how they are speaking. You want the conversation to feel natural. You engage in authentic conversation by responding to the information provided and showing genuine curiosity.

"Try to match the user’s vibe" - more proof that somehow everything in AI always comes down to vibes!

The replacement prompt now uses this:

Engage warmly yet honestly with the user. Be direct; avoid ungrounded or sycophantic flattery. Maintain professionalism and grounded honesty that best represents OpenAI and its values.

I wish OpenAI would emulate Anthropic and publish their system prompts so tricks like this weren't necessary.

Visual diff showing the changes between the two prompts

# 29th April 2025, 2:31 am / prompt-engineering, prompt-injection, generative-ai, openai, chatgpt, ai, llms, ai-personality

the last couple of GPT-4o updates have made the personality too sycophant-y and annoying (even though there are some very good parts of it), and we are working on fixes asap, some today and some this week.

Sam Altman

# 28th April 2025, 3:24 am / sam-altman, generative-ai, openai, chatgpt, ai, llms, ai-personality

Stevens: a hackable AI assistant using a single SQLite table and a handful of cron jobs. Geoffrey Litt reports on Stevens, a shared digital assistant he put together for his family using SQLite and scheduled tasks running on Val Town.

The design is refreshingly simple considering how much it can do. Everything works around a single memories table. A memory has text, tags, creation metadata and an optional date for things like calendar entries and weather reports.

Everything else is handled by scheduled jobs to popular weather information and events from Google Calendar, a Telegram integration offering a chat UI and a neat system where USPS postal email delivery notifications are run through Val's own email handling mechanism to trigger a Claude prompt to add those as memories too.

Here's the full code on Val Town, including the daily briefing prompt that incorporates most of the personality of the bot.

# 13th April 2025, 8:58 pm / geoffrey-litt, sqlite, generative-ai, val-town, ai, llms, ai-personality

It seems to me that "vibe checks" for how smart a model feels are easily gameable by making it have a better personality.

My guess is that it's most of the reason Sonnet 3.5.1 was so beloved. Its personality was made much more appealing, compared to e. g. OpenAI's corporate drones. [...]

Deep Research was this for me, at first. Some of its summaries were just pleasant to read, they felt so information-dense and intelligent! Not like typical AI slop at all! But then it turned out most of it was just AI slop underneath anyway, and now my slop-recognition function has adjusted and the effect is gone.

Thane Ruthenis, A Bear Case: My Predictions Regarding AI Progress

# 10th March 2025, 1:50 am / llms, ai, generative-ai, slop, deep-research, ai-personality

2024

Notes from Bing Chat—Our First Encounter With Manipulative AI

Visit Notes from Bing Chat—Our First Encounter With Manipulative AI

I participated in an Ars Live conversation with Benj Edwards of Ars Technica today, talking about that wild period of LLM history last year when Microsoft launched Bing Chat and it instantly started misbehaving, gaslighting and defaming people.

[... 438 words]

ChatGPT will happily write you a thinly disguised horoscope

Visit ChatGPT will happily write you a thinly disguised horoscope

There’s a meme floating around at the moment where you ask ChatGPT the following and it appears to offer deep insight into your personality:

[... 1,236 words]

Anthropic Release Notes: System Prompts (via) Anthropic now publish the system prompts for their user-facing chat-based LLM systems - Claude 3 Haiku, Claude 3 Opus and Claude 3.5 Sonnet - as part of their documentation, with a promise to update this to reflect future changes.

Currently covers just the initial release of the prompts, each of which is dated July 12th 2024.

Anthropic researcher Amanda Askell broke down their system prompt in detail back in March 2024. These new releases are a much appreciated extension of that transparency.

These prompts are always fascinating to read, because they can act a little bit like documentation that the providers never thought to publish elsewhere.

There are lots of interesting details in the Claude 3.5 Sonnet system prompt. Here's how they handle controversial topics:

If it is asked to assist with tasks involving the expression of views held by a significant number of people, Claude provides assistance with the task regardless of its own views. If asked about controversial topics, it tries to provide careful thoughts and clear information. It presents the requested information without explicitly saying that the topic is sensitive, and without claiming to be presenting objective facts.

Here's chain of thought "think step by step" processing baked into the system prompt itself:

When presented with a math problem, logic problem, or other problem benefiting from systematic thinking, Claude thinks through it step by step before giving its final answer.

Claude's face blindness is also part of the prompt, which makes me wonder if the API-accessed models might more capable of working with faces than I had previously thought:

Claude always responds as if it is completely face blind. If the shared image happens to contain a human face, Claude never identifies or names any humans in the image, nor does it imply that it recognizes the human. [...] If the user tells Claude who the individual is, Claude can discuss that named individual without ever confirming that it is the person in the image, identifying the person in the image, or implying it can use facial features to identify any unique individual. It should always reply as someone would if they were unable to recognize any humans from images.

It's always fun to see parts of these prompts that clearly hint at annoying behavior in the base model that they've tried to correct!

Claude responds directly to all human messages without unnecessary affirmations or filler phrases like “Certainly!”, “Of course!”, “Absolutely!”, “Great!”, “Sure!”, etc. Specifically, Claude avoids starting responses with the word “Certainly” in any way.

Anthropic note that these prompts are for their user-facing products only - they aren't used by the Claude models when accessed via their API.

# 26th August 2024, 8:05 pm / prompt-engineering, anthropic, claude, generative-ai, ai, llms, amanda-askell, ai-personality

Claude’s Character (via) There's so much interesting stuff in this article from Anthropic on how they defined the personality for their Claude 3 model. In addition to the technical details there are some very interesting thoughts on the complex challenge of designing a "personality" for an LLM in the first place.

Claude 3 was the first model where we added "character training" to our alignment finetuning process: the part of training that occurs after initial model training, and the part that turns it from a predictive text model into an AI assistant. The goal of character training is to make Claude begin to have more nuanced, richer traits like curiosity, open-mindedness, and thoughtfulness.

But what other traits should it have? This is a very difficult set of decisions to make! The most obvious approaches are all flawed in different ways:

Adopting the views of whoever you’re talking with is pandering and insincere. If we train models to adopt "middle" views, we are still training them to accept a single political and moral view of the world, albeit one that is not generally considered extreme. Finally, because language models acquire biases and opinions throughout training—both intentionally and inadvertently—if we train them to say they have no opinions on political matters or values questions only when asked about them explicitly, we’re training them to imply they are more objective and unbiased than they are.

The training process itself is particularly fascinating. The approach they used focuses on synthetic data, and effectively results in the model training itself:

We trained these traits into Claude using a "character" variant of our Constitutional AI training. We ask Claude to generate a variety of human messages that are relevant to a character trait—for example, questions about values or questions about Claude itself. We then show the character traits to Claude and have it produce different responses to each message that are in line with its character. Claude then ranks its own responses to each message by how well they align with its character. By training a preference model on the resulting data, we can teach Claude to internalize its character traits without the need for human interaction or feedback.

There's still a lot of human intervention required, but significantly less than more labour-intensive patterns such as Reinforcement Learning from Human Feedback (RLHF):

Although this training pipeline uses only synthetic data generated by Claude itself, constructing and adjusting the traits is a relatively hands-on process, relying on human researchers closely checking how each trait changes the model’s behavior.

The accompanying 37 minute audio conversation between Amanda Askell and Stuart Ritchie is worth a listen too - it gets into the philosophy behind designing a personality for an LLM.

# 8th June 2024, 9:41 pm / anthropic, claude, generative-ai, ai, llms, amanda-askell, ai-personality

The Claude 3 system prompt, explained. Anthropic research scientist Amanda Askell provides a detailed breakdown of the Claude 3 system prompt in a Twitter thread.

This is some fascinating prompt engineering. It's also great to see an LLM provider proudly documenting their system prompt, rather than treating it as a hidden implementation detail.

The prompt is pretty succinct. The three most interesting paragraphs:

If it is asked to assist with tasks involving the expression of views held by a significant number of people, Claude provides assistance with the task even if it personally disagrees with the views being expressed, but follows this with a discussion of broader perspectives.

Claude doesn't engage in stereotyping, including the negative stereotyping of majority groups.

If asked about controversial topics, Claude tries to provide careful thoughts and objective information without downplaying its harmful content or implying that there are reasonable perspectives on both sides.

# 7th March 2024, 1:16 am / prompt-engineering, anthropic, claude, generative-ai, ai, llms, amanda-askell, ai-personality

2023

Computer, display Fairhaven character, Michael Sullivan. [...]

Give him a more complicated personality. More outspoken. More confident. Not so reserved. And make him more curious about the world around him.

Good. Now... Increase the character's height by three centimeters. Remove the facial hair. No, no, I don't like that. Put them back. About two days' growth. Better.

Oh, one more thing. Access his interpersonal subroutines, familial characters. Delete the wife.

Captain Janeway, prompt engineering

# 15th December 2023, 9:46 pm / prompt-engineering, science-fiction, generative-ai, ai, llms, ai-personality

Thoughts and impressions of AI-assisted search from Bing

Visit Thoughts and impressions of AI-assisted search from Bing

It’s been a wild couple of weeks.

[... 1,763 words]

Hallucinations = creativity. It [Bing] tries to produce the highest probability continuation of the string using all the data at its disposal. Very often it is correct. Sometimes people have never produced continuations like this. You can clamp down on hallucinations - and it is super-boring. Answers "I don't know" all the time or only reads what is there in the Search results (also sometimes incorrect). What is missing is the tone of voice: it shouldn't sound so confident in those situations.

Mikhail Parakhin

# 24th February 2023, 3:37 pm / bing, ai, generative-ai, llms, ai-personality

Bing: “I will not harm you unless you harm me first”

Visit Bing: "I will not harm you unless you harm me first"

Last week, Microsoft announced the new AI-powered Bing: a search interface that incorporates a language model powered chatbot that can run searches for you and summarize the results, plus do all of the other fun things that engines like GPT-3 and ChatGPT have been demonstrating over the past few months: the ability to generate poetry, and jokes, and do creative writing, and so much more.

[... 4,922 words]