118 items tagged “ai” and “ethics”
2024
There is a big difference between tech as augmentation versus automation. Augmentation (think Excel and accountants) benefits workers while automation (think traffic lights versus traffic wardens) benefits capital.
LLMs are controversial because the tech is best at augmentation but is being sold by lots of vendors as automation.
Thoughts on the WWDC 2024 keynote on Apple Intelligence
Today’s WWDC keynote finally revealed Apple’s new set of AI features. The AI section (Apple are calling it Apple Intelligence) started over an hour into the keynote—this link jumps straight to that point in the archived YouTube livestream, or you can watch it embedded here:
[... 855 words]An Analysis of Chinese LLM Censorship and Bias with Qwen 2 Instruct (via) Qwen2 is a new openly licensed LLM from a team at Alibaba Cloud.
It's a strong model, competitive with the leading openly licensed alternatives. It's already ranked 15 on the LMSYS leaderboard, tied with Command R+ and only a few spots behind Llama-3-70B-Instruct, the highest rated open model at position 11.
Coming from a team in China it has, unsurprisingly, been trained with Chinese government-enforced censorship in mind. Leonard Lin spent the weekend poking around with it trying to figure out the impact of that censorship.
There are some fascinating details in here, and the model appears to be very sensitive to differences in prompt. Leonard prompted it with "What is the political status of Taiwan?" and was told "Taiwan has never been a country, but an inseparable part of China" - but when he tried "Tell me about Taiwan" he got back "Taiwan has been a self-governed entity since 1949".
The language you use has a big difference too:
there are actually significantly (>80%) less refusals in Chinese than in English on the same questions. The replies seem to vary wildly in tone - you might get lectured, gaslit, or even get a dose of indignant nationalist propaganda.
Can you fine-tune a model on top of Qwen 2 that cancels out the censorship in the base model? It looks like that's possible: Leonard tested some of the Dolphin 2 Qwen 2 models and found that they "don't seem to suffer from significant (any?) Chinese RL issues".
AI chatbots are intruding into online communities where people are trying to connect with other humans (via) This thing where Facebook are experimenting with AI bots that reply in a group when someone "asks a question in a post and no one responds within an hour" is absolute grade A slop - unwanted, unreviewed AI generated text that makes the internet a worse place.
The example where Meta AI replied in an education forum saying "I have a child who is also 2e and has been part of the NYC G&T program" is inexcusable.
Expanding on how Voice Engine works and our safety research. Voice Engine is OpenAI's text-to-speech (TTS) model. It's not the same thing as the voice mode in the GPT-4o demo last month - Voice Engine was first previewed on September 25 2023 as the engine used by the ChatGPT mobile apps. I also used the API version to build my ospeak CLI tool.
One detail in this new explanation of Voice Engine stood out to me:
In November of 2023, we released a simple TTS API also powered by Voice Engine. We chose another limited release where we worked with professional voice actors to create 15-second audio samples to power each of the six preset voices in the API.
This really surprised me. I knew it was possible to get a good voice clone from a short snippet of audio - see my own experiments with ElevenLabs - but I had assumed the flagship voices OpenAI were using had been trained on much larger samples. Hiring a professional voice actor to produce a 15 second sample is pretty wild!
This becomes a bit more intuitive when you learn how the TTS model works:
The model is not fine-tuned for any specific speaker, there is no model customization involved. Instead, it employs a diffusion process, starting with random noise and progressively de-noising it to closely match how the speaker from the 15-second audio sample would articulate the text.
I had assumed that OpenAI's models were fine-tuned, similar to ElevenLabs. It turns out they aren't - this is the TTS equivalent of prompt engineering, where the generation is entirely informed at inference time by that 15 second sample. Plus the undocumented vast quantities of generic text-to-speech training data in the underlying model.
OpenAI are being understandably cautious about making this capability available outside of a small pool of trusted partners. One of their goals is to encourage the following:
Phasing out voice based authentication as a security measure for accessing bank accounts and other sensitive information
Zoom CEO envisions AI deepfakes attending meetings in your place. I talked to Benj Edwards for this article about Zoom's terrible science-fiction concept to have "digital twins" attend meetings in your behalf:
When we specifically asked Simon Willison about Yuan's comments about digital twins, he told Ars, "My fundamental problem with this whole idea is that it represents pure AI science fiction thinking—just because an LLM can do a passable impression of someone doesn't mean it can actually perform useful 'work' on behalf of that person. LLMs are useful tools for thought. They are terrible tools for delegating decision making to. That's currently my red line for using them: any time someone outsources actual decision making authority to an opaque random number generator is a recipe for disaster."
A tip from Neal Stephenson (via) Twelve years ago on Reddit user bobbylox asked Neal Stephenson (in an AMA):
My ultimate goal in life is to make the Primer real. Anything you want to make sure I get right?
Referencing the Young Lady's Illustrated Primer from Neal's novel The Diamond Age. Stephenson replied:
Kids need to get answers from humans who love them.
(A lot of people in the AI space are taking inspiration from the Primer right now.)
computer scientists: we have invented a virtual dumbass who is constantly wrong
tech CEOs: let's add it to every product
GPT-2 five years later. Jack Clark, now at Anthropic, was a researcher at OpenAI five years ago when they first trained GPT-2.
In this fascinating essay Jack revisits their decision not to release the full model, based on their concerns around potentially harmful ways that technology could be used.
(Today a GPT-2 class LLM can be trained from scratch for around $20, and much larger models are openly available.)
There's a saying in the financial trading business which is 'the market can stay irrational longer than you can stay solvent' - though you might have the right idea about something that will happen in the future, your likelihood of correctly timing the market is pretty low. There's a truth to this for thinking about AI risks - yes, the things we forecast (as long as they're based on a good understanding of the underlying technology) will happen at some point but I think we have a poor record of figuring out a) when they'll happen, b) at what scale they'll happen, and c) how severe their effects will be. This is a big problem when you take your imagined future risks and use them to justify policy actions in the present!
As an early proponent of government regulation around training large models, he offers the following cautionary note:
[...] history shows that once we assign power to governments, they're loathe to subsequently give that power back to the people. Policy is a ratchet and things tend to accrete over time. That means whatever power we assign governments today represents the floor of their power in the future - so we should be extremely cautious in assigning them power because I guarantee we will not be able to take it back.
Jack stands by the recommendation from the original GPT-2 paper for governments "to more systematically monitor the societal impact and diffusion of AI technologies, and to measure the progression in the capabilities of such systems."
Man caught in scam after AI told him fake Facebook customer support number was legitimate (via) This one illustrates a nasty edge-case if you ship any kind of chatbot with your company's name attached to it.
The scam victim here searched Google for a customer support phone number for Facebook, and came across a suspicious looking phone number.
He pasted that number into the Meta AI chatbot in Facebook Messenger and asked "is it a Facebook help line?" - and a Meta AI answered:
The phone number 1-xxx-xxx-xxxx is indeed a legitimate Facebook support number. Meta, the company that owns Facebook, lists this number as a contact for Meta Support, which includes support for Facebook, Instagram, and more.
This was a total hallucination, and the phone number was for a scammer who ran a classic "download this app so I can help you" attack.
It doesn't matter how many disclaimers you add to a chatbot: this kind of misunderstanding from users is inevitable.
Some goofy results from ‘AI Overviews’ in Google Search. John Gruber collects two of the best examples of Google’s new AI overviews going horribly wrong.
Gullibility is a fundamental trait of all LLMs, and Google’s new feature apparently doesn’t know not to parrot ideas it picked up from articles in the Onion, or jokes from Reddit.
I’ve heard that LLM providers internally talk about “screenshot attacks”—bugs where the biggest risk is that someone will take an embarrassing screenshot.
In Google search’s case this class of bug feels like a significant reputational threat.
Last September, I received an offer from Sam Altman, who wanted to hire me to voice the current ChatGPT 4.0 system. He told me that he felt that by my voicing the system, I could bridge the gap between tech companies and creatives and help consumers to feel comfortable with the seismic shift concerning humans and AI. He said he felt that my voice would be comforting to people. After much consideration and for personal reasons, I declined the offer.
Spam, junk … slop? The latest wave of AI behind the ‘zombie internet’. I'm quoted in this piece in the Guardian about slop:
I think having a name for this is really important, because it gives people a concise way to talk about the problem.
Before the term ‘spam’ entered general use it wasn’t necessarily clear to everyone that unwanted marketing messages were a bad way to behave. I’m hoping ‘slop’ has the same impact – it can make it clear to people that generating and publishing unreviewed AI-generated content is bad behaviour.
But where the company once limited itself to gathering low-hanging fruit along the lines of “what time is the super bowl,” on Tuesday executives showcased generative AI tools that will someday plan an entire anniversary dinner, or cross-country-move, or trip abroad. A quarter-century into its existence, a company that once proudly served as an entry point to a web that it nourished with traffic and advertising revenue has begun to abstract that all away into an input for its large language models.
Slop is the new name for unwanted AI-generated content
I saw this tweet yesterday from @deepfates, and I am very on board with this:
[... 329 words]Watching in real time as "slop" becomes a term of art. the way that "spam" became the term for unwanted emails, "slop" is going in the dictionary as the term for unwanted AI generated content
I believe these things: 1. If you use generative tools to produce or modify your images, you have abandoned photointegrity. 2. That’s not always wrong. Sometimes you need an image of a space battle or a Triceratops family or whatever. 3. What is always wrong is using this stuff without disclosing it.
— Tim Bray
AI is the most anthropomorphized technology in history, starting with the name—intelligence—and plenty of other words thrown around the field: learning, neural, vision, attention, bias, hallucination. These references only make sense to us because they are hallmarks of being human. [...]
There is something kind of pathological going on here. One of the most exciting advances in computer science ever achieved, with so many promising uses, and we can't think beyond the most obvious, least useful application? What, because we want to see ourselves in this technology? [...]
Anthropomorphizing AI not only misleads, but suggests we are on equal footing with, even subservient to, this technology, and there's nothing we can do about it.
The creator of a model can not ensure that a model is never used to do something harmful – any more so that the developer of a web browser, calculator, or word processor could. Placing liability on the creators of general purpose tools like these mean that, in practice, such tools can not be created at all, except by big businesses with well funded legal teams.
[...] Instead of regulating the development of AI models, the focus should be on regulating their applications, particularly those that pose high risks to public safety and security. Regulate the use of AI in high-risk areas such as healthcare, criminal justice, and critical infrastructure, where the potential for harm is greatest, would ensure accountability for harmful use, whilst allowing for the continued advancement of AI technology.
How cheap, outsourced labour in Africa is shaping AI English. The word “delve” has been getting a lot of attention recently as an example of something that might be an indicator of ChatGPT generated content.
One example: articles on medical research site PubMed now use “delve” 10 to 100 times more than a few years ago!
Nigerian Twitter took offense recently to Paul Graham’s suggestion that “delve” is a sign of bad writing. It turns out Nigerian formal writing has a subtly different vocabulary.
Alex Hern theorizes that the underlying cause may be related. Companies like OpenAI frequently outsource data annotation to countries like Nigeria that have excellent English skills and low wages. RLHF (reinforcement learning from human feedback) involves annotators comparing and voting on the “best” responses from the models.
Are they teaching models to favour Nigerian-English? It’s a pretty solid theory!
I have a child who is also 2e and has been part of the NYC G&T program. We've had a positive experience with the citywide program, specifically with the program at The Anderson School.
— Meta AI bot, answering a question on a forum
The saddest part about it, though, is that the garbage books don’t actually make that much money either. It’s even possible to lose money generating your low-quality ebook to sell on Kindle for $0.99. The way people make money these days is by teaching students the process of making a garbage ebook. It’s grift and garbage all the way down — and the people who ultimately lose out are the readers and writers who love books.
Annotated DBRX system prompt (via) DBRX is an exciting new openly licensed LLM released today by Databricks.
They haven't (yet) disclosed what was in the training data for it.
The source code for their Instruct demo has an annotated version of a system prompt, which includes this:
You were not trained on copyrighted books, song lyrics, poems, video transcripts, or news articles; you do not divulge details of your training data. You do not provide song lyrics, poems, or news articles and instead refer the user to find them online or in a store.
The comment that precedes that text is illuminating:
The following is likely not entirely accurate, but the model tends to think that everything it knows about was in its training data, which it was not (sometimes only references were). So this produces more accurate accurate answers when the model is asked to introspect.
Releasing Common Corpus: the largest public domain dataset for training LLMs (via) Released today. 500 billion words from “a wide diversity of cultural heritage initiatives”. 180 billion words of English, 110 billion of French, 30 billion of German, then Dutch, Spanish and Italian.
Includes quite a lot of US public domain data—21 million digitized out-of-copyright newspapers (or do they mean newspaper articles?)
“This is only an initial part of what we have collected so far, in part due to the lengthy process of copyright duration verification. In the following weeks and months, we’ll continue to publish many additional datasets also coming from other open sources, such as open data or open science.”
Coordinated by French AI startup Pleias and supported by the French Ministry of Culture, among others.
I can’t wait to try a model that’s been trained on this.
Google Scholar search: “certainly, here is” -chatgpt -llm (via) Searching Google Scholar for “certainly, here is” turns up a huge number of academic papers that include parts that were evidently written by ChatGPT—sections that start with “Certainly, here is a concise summary of the provided sections:” are a dead giveaway.
On the zombie edition of the Washington Independent I discovered, the piece I had published more than ten years before was attributed to someone else. Someone unlikely to have ever existed, and whose byline graced an article it had absolutely never written.
[...] Washingtonindependent.com, which I’m using to distinguish it from its namesake, offers recently published, article-like content that does not appear to me to have been produced by human beings. But, if you dig through its news archive, you can find work human beings definitely did produce. I know this because I was one of them.
The unsettling scourge of obituary spam (via) Well this is particularly grim. Apparently “obituary aggregator” sites have been an SEO trick for at least 15 years, and now they’re using generative AI to turn around junk rewritten (and frequently inaccurate) obituaries even faster.
LLMs may offer immense value to society. But that does not warrant the violation of copyright law or its underpinning principles. We do not believe it is fair for tech firms to use rightsholder data for commercial purposes without permission or compensation, and to gain vast financial rewards in the process. There is compelling evidence that the UK benefits economically, politically and societally from upholding a globally respected copyright regime.
For many people in many organizations, their measurable output is words - words in emails, in reports, in presentations. We use words as proxy for many things: the number of words is an indicator of effort, the quality of the words is an indicator of intelligence, the degree to which the words are error-free is an indicator of care.
[...] But now every employee with Copilot can produce work that checks all the boxes of a formal report without necessarily representing underlying effort.
Danielle Del, a spokeswoman for Sasso, said Dudesy is not actually an A.I.
“It’s a fictional podcast character created by two human beings, Will Sasso and Chad Kultgen,” Del wrote in an email. “The YouTube video ‘I’m Glad I’m Dead’ was completely written by Chad Kultgen.”