Simon Willison’s Weblog


Monday, 13th May 2024

LLM 0.14, with support for GPT-4o. It's been a while since the last LLM release. This one adds support for OpenAI's new model:

llm -m gpt-4o "fascinate me"

Also a new llm logs -r (or --response) option for getting back just the response from your last prompt, without wrapping it in Markdown that includes the prompt.

Plus nine new plugins since 0.13! # 9 pm

Hello GPT-4o. OpenAI announced a new model today: GPT-4o, where the o stands for "omni".

It looks like this is the gpt2-chatbot we've been seeing in the Chat Arena the past few weeks.

GPT-4o doesn't seem to be a huge leap ahead of GPT-4 in terms of "intelligence" - whatever that might mean - but it has a bunch of interesting new characteristics.

First, it's multi-modal across text, images and audio as well. The audio demos from this morning's launch were extremely impressive.

ChatGPT's previous voice mode worked by passing audio through a speech-to-text model, then an LLM, then a text-to-speech for the output. GPT-4o does everything with the one model, reducing latency to the point where it can act as a live interpreter between people speaking in two different languages. It also has the ability to interpret tone of voice, and has much more control over the voice and intonation it uses in response.

It's very science fiction, and has hints of uncanny valley. I can't wait to try it out - it should be rolling out to the various OpenAI apps "in the coming weeks".

Meanwhile the new model itself is already available for text and image inputs via the API and in the Playground interface, as model ID "gpt-4o" or "gpt-4o-2024-05-13". My first impressions are that it feels notably faster than gpt-4-turbo.

This announcement post also includes examples of image output from the new model. It looks like they may have taken big steps forward in two key areas of image generation: output of text (the "Poetic typography" examples) and maintaining consistent characters across multiple prompts (the "Character design - Geary the robot" example).

The size of the vocabulary of the tokenizer - effectively the number of unique integers used to represent text - has increased to ~200,000 from ~100,000 for GPT-4 and GPT-3:5. Inputs in Gujarati use 4.4x fewer tokens, Japanese uses 1.4x fewer, Spanish uses 1.1x fewer. Previously languages other than English paid a material penalty in terms of how much text could fit into a prompt, it's good to see that effect being reduced.

Also notable: the price. OpenAI claim a 50% price reduction compared to GPT-4 Turbo. Conveniently, gpt-4o costs exactly 10x gpt-3.5: 4o is $5/million input tokens and $15/million output tokens. 3.5 is $0.50/million input tokens and $1.50/million output tokens.

(I was a little surprised not to see a price decrease there to better compete with the less expensive Claude 3 Haiku.)

The price drop is particularly notable because OpenAI are promising to make this model available to free ChatGPT users as well - the first time they've directly name their "best" model available to non-paying customers.

Tucked away right at the end of the post:

We plan to launch support for GPT-4o's new audio and video capabilities to a small group of trusted partners in the API in the coming weeks.

I'm looking forward to learning more about these video capabilities, which were hinted at by some of the live demos in this morning's presentation. # 7:09 pm

I’m no developer, but I got the AI part working in about an hour.

What took longer was the other stuff: identifying the problem, designing and building the UI, setting up the templating, routes and data architecture.

It reminded me that, in order to capitalise on the potential of AI technologies, we need to really invest in the other stuff too, especially data infrastructure.

It would be ironic, and a huge shame, if AI hype sucked all the investment out of those things.

Tim Paul # 2:35 pm

GPUs Go Brrr (via) Fascinating, detailed low-level notes on how to get the most out of NVIDIA's H100 GPUs (currently selling for around $40,000 a piece) from the research team at Stanford who created FlashAttention, among other things.

The swizzled memory layouts are flat-out incorrectly documented, which took considerable time for us to figure out.

# 4:08 am