Simon Willison’s Weblog

Subscribe

5 items tagged “huggingface”

2023

Weird A.I. Yankovic, a cursed deep dive into the world of voice cloning. Andy Baio reports back on his investigations into the world of AI voice cloning.

This is no longer a niche interest. There’s a Discord with 500,000 members sharing tips and tricks on cloning celebrity voices in order to make their own cover songs, often built with Google Colab using models distributed through Hugging Face.

Andy then makes his own, playing with the concept “What if every Weird Al song was the original, and every other artist was covering his songs instead?”

I particularly enjoyed Madonna’s cover of “Like A Surgeon”, Lady Gaga’s “Perform This Way” and Lorde’s “Foil”. # 2nd October 2023, 6:50 pm

All models on Hugging Face, sorted by downloads (via) I realized this morning that “sort by downloads” against the list of all of the models on Hugging Face can work as a reasonably good proxy for “which of these models are easiest to get running on your own computer”. # 10th September 2023, 5:24 pm

Hugging Face Transformers Agent. Fascinating new Python API in Hugging Face Transformers version v4.29.0: you can now provide a text description of a task—e.g. “Draw me a picture of the sea then transform the picture to add an island”—and a LLM will turn that into calls to Hugging Face models which will then be installed and used to carry out the instructions. The Colab notebook is worth playing with—you paste in an OpenAI API key and a Hugging Face token and it can then run through all sorts of examples, which tap into tools that include image generation, image modification, summarization, audio generation and more. # 10th May 2023, 7:50 pm

Jsonformer: A Bulletproof Way to Generate Structured JSON from Language Models. This is such an interesting trick. A common challenge with LLMs is getting them to output a specific JSON shape of data reliably, without occasionally messing up and generating invalid JSON or outputting other text.

Jsonformer addresses this in a truly ingenious way: it implements code that interacts with the logic that decides which token to output next, influenced by a JSON schema. If that code knows that the next token after a double quote should be a comma it can force the issue for that specific token.

This means you can get reliable, robust JSON output even for much smaller, less capable language models.

It’s built against Hugging Face transformers, but there’s no reason the same idea couldn’t be applied in other contexts as well. # 8th May 2023, 11:02 pm

Transformers.js. Hugging Face Transformers is a library of Transformer machine learning models plus a Python package for loading and running them. Transformers.js provides a JavaScript alternative interface which runs in your browser, thanks to a set of precompiled WebAssembly binaries for a selection of models. This interactive demo is incredible: in particular, try running the Image classification with google/vit-base-patch16-224 (91MB) model against any photo to get back labels representing that photo. Dropping one of these models onto a page is as easy as linking to a hosted CDN script and running a few lines of JavaScript. # 16th March 2023, 11:41 pm