Simon Willison’s Weblog

Subscribe

19th February 2026

SWE-bench February 2026 leaderboard update (via) SWE-bench is one of the benchmarks that the labs love to list in their model releases. The official leaderboard is infrequently updated but they just did a full run of it against the current generation of models, which is notable because it's always good to see benchmark results like this that weren't self-reported by the labs.

The fresh results are for their "Bash Only" benchmark, which runs their mini-swe-bench agent (~9,000 lines of Python, here are the prompts they use) against the SWE-bench dataset of coding problems - 2,294 real-world examples pulled from 12 open source repos: django/django (850), sympy/sympy (386), scikit-learn/scikit-learn (229), sphinx-doc/sphinx (187), matplotlib/matplotlib (184), pytest-dev/pytest (119), pydata/xarray (110), astropy/astropy (95), pylint-dev/pylint (57), psf/requests (44), mwaskom/seaborn (22), pallets/flask (11).

Here's how the top ten models performed:

Bar chart showing "% Resolved" by "Model". Bars in descending order: Claude 4.5 Opus (high reasoning) 76.8%, Gemini 3 Flash (high reasoning) 75.8%, MiniMax M2.5 (high reasoning) 75.8%, Claude Opus 4.6 75.6%, GLM-5 (high reasoning) 72.8%, GPT-5.2 (high reasoning) 72.8%, Claude 4.5 Sonnet (high reasoning) 72.8%, Kimi K2.5 (high reasoning) 71.4%, DeepSeek V3.2 (high reasoning) 70.8%, Claude 4.5 Haiku (high reasoning) 70.0%, and a partially visible final bar at 66.6%.

It's interesting to see Claude Opus 4.5 beat Opus 4.6, though only by about a percentage point. 4.5 Opus is top, then Gemini 3 Flash, then MiniMax M2.5 - a 229B model released last week by Chinese lab MiniMax. GLM-5, Kimi K2.5 and DeepSeek V3.2 are three more Chinese models that make the top ten as well.

OpenAI's GPT-5.2 is their highest performing model at position 6, but it's worth noting that their best coding model, GPT-5.3-Codex, is not represented - maybe because it's not yet available in the OpenAI API.

This benchmark uses the same system prompt for every model, which is important for a fair comparison but does mean that the quality of the different harnesses or optimized prompts is not being measured here.

The chart above is a screenshot from the SWE-bench website, but their charts don't include the actual percentage values visible on the bars. I successfully used Claude for Chrome to add these - transcript here. My prompt sequence included:

Use claude in chrome to open https://www.swebench.com/

Click on "Compare results" and then select "Select top 10"

See those bar charts? I want them to display the percentage on each bar so I can take a better screenshot, modify the page like that

I'm impressed at how well this worked - Claude injected custom JavaScript into the page to draw additional labels on top of the existing chart.

Screenshot of a Claude AI conversation showing browser automation. A thinking step reads "Pivoted strategy to avoid recursion issues with chart labeling >" followed by the message "Good, the chart is back. Now let me carefully add the labels using an inline plugin on the chart instance to avoid the recursion issue." A collapsed "Browser_evaluate" section shows a browser_evaluate tool call with JavaScript code using Chart.js canvas context to draw percentage labels on bars: meta.data.forEach((bar, index) => { const value = dataset.data[index]; if (value !== undefined && value !== null) { ctx.save(); ctx.textAlign = 'center'; ctx.textBaseline = 'bottom'; ctx.fillStyle = '#333'; ctx.font = 'bold 12px sans-serif'; ctx.fillText(value.toFixed(1) + '%', bar.x, bar.y - 5); A pending step reads "Let me take a screenshot to see if it worked." followed by a completed "Done" step, and the message "Let me take a screenshot to check the result."

Recent articles

This is a link post by Simon Willison, posted on 19th February 2026.

Monthly briefing

Sponsor me for $10/month and get a curated email digest of the month's most important LLM developments.

Pay me to send you less!

Sponsor & subscribe