Simon Willison’s Weblog

Subscribe

Generative AI – The Power and the Glory (via) Michael Liebreich's epic report for BloombergNEF on the current state of play with regards to generative AI, energy usage and data center growth.

I learned so much from reading this. If you're at all interested in the energy impact of the latest wave of AI tools I recommend spending some time with this article.

Just a few of the points that stood out to me:

  • This isn't the first time a leap in data center power use has been predicted. In 2007 the EPA predicted data center energy usage would double: it didn't, thanks to efficiency gains from better servers and the shift from in-house to cloud hosting. In 2017 the WEF predicted cryptocurrency could consume al the world's electric power by 2020, which was cut short by the first crypto bubble burst. Is this time different? Maybe.
  • Michael re-iterates (Sequoia) David Cahn's $600B question, pointing out that if the anticipated infrastructure spend on AI requires $600bn in annual revenue that means 1 billion people will need to spend $600/year or 100 million intensive users will need to spend $6,000/year.
  • Existing data centers often have a power capacity of less than 10MW, but new AI-training focused data centers tend to be in the 75-150MW range, due to the need to colocate vast numbers of GPUs for efficient communication between them - these can at least be located anywhere in the world. Inference is a lot less demanding as the GPUs don't need to collaborate in the same way, but it needs to be close to human population centers to provide low latency responses.
  • NVIDIA are claiming huge efficiency gains. "Nvidia claims to have delivered a 45,000 improvement in energy efficiency per token (a unit of data processed by AI models) over the past eight years" - and that "training a 1.8 trillion-parameter model using Blackwell GPUs, which only required 4MW, versus 15MW using the previous Hopper architecture".
  • Michael's own global estimate is "45GW of additional demand by 2030", which he points out is "equivalent to one third of the power demand from the world’s aluminum smelters". But much of this demand needs to be local, which makes things a lot more challenging, especially given the need to integrate with the existing grid.
  • Google, Microsoft, Meta and Amazon all have net-zero emission targets which they take very seriously, making them "some of the most significant corporate purchasers of renewable energy in the world". This helps explain why they're taking very real interest in nuclear power.
  • Elon's 100,000-GPU data center in Memphis currently runs on gas:

    When Elon Musk rushed to get x.AI's Memphis Supercluster up and running in record time, he brought in 14 mobile natural gas-powered generators, each of them generating 2.5MW. It seems they do not require an air quality permit, as long as they do not remain in the same location for more than 364 days.

  • Here's a reassuring statistic: "91% of all new power capacity added worldwide in 2023 was wind and solar".

There's so much more in there, I feel like I'm doing the article a disservice by attempting to extract just the points above.

Michael's conclusion is somewhat optimistic:

In the end, the tech titans will find out that the best way to power AI data centers is in the traditional way, by building the same generating technologies as are proving most cost effective for other users, connecting them to a robust and resilient grid, and working with local communities. [...]

When it comes to new technologies – be it SMRs, fusion, novel renewables or superconducting transmission lines – it is a blessing to have some cash-rich, technologically advanced, risk-tolerant players creating demand, which has for decades been missing in low-growth developed world power markets.

(BloombergNEF is an energy research group acquired by Bloomberg in 2009, originally founded by Michael as New Energy Finance in 2004.)