Google NotebookLM Data Exfiltration (via) NotebookLM is a Google Labs product that lets you store information as sources (mainly text files in PDF) and then ask questions against those sources—effectively an interface for building your own custom RAG (Retrieval Augmented Generation) chatbots.
Unsurprisingly for anything that allows LLMs to interact with untrusted documents, it’s susceptible to prompt injection.
Johann Rehberger found some classic prompt injection exfiltration attacks: you can create source documents with instructions that cause the chatbot to load a Markdown image that leaks other private data to an external domain as data passed in the query string.
Johann reported this privately in the December but the problem has not yet been addressed. UPDATE: The NotebookLM team deployed a fix for this on 18th April.
A good rule of thumb is that any time you let LLMs see untrusted tokens there is a risk of an attack like this, so you should be very careful to avoid exfiltration vectors like Markdown images or even outbound links.
Recent articles
- Project: Civic Band - scraping and searching PDF meeting minutes from hundreds of municipalities - 16th November 2024
- Qwen2.5-Coder-32B is an LLM that can code well that runs on my Mac - 12th November 2024
- Visualizing local election results with Datasette, Observable and MapLibre GL - 9th November 2024