The challenge [with RAG] is that most corner-cutting solutions look like they’re working on small datasets while letting you pretend that things like search relevance don’t matter, while in reality relevance significantly impacts quality of responses when you move beyond prototyping (whether they’re literally search relevance or are better tuned SQL queries to retrieve more appropriate rows). This creates a false expectation of how the prototype will translate into a production capability, with all the predictable consequences: underestimating timelines, poor production behavior/performance, etc.
Recent articles
- Putting Gemini 2.5 Pro through its paces - 25th March 2025
- New audio models from OpenAI, but how much can we rely on them? - 20th March 2025
- Calling a wrap on my weeknotes - 20th March 2025