A practical guide to deploying Large Language Models Cheap, Good *and* Fast. Joel Kang’s extremely comprehensive notes on what he learned trying to run Vicuna-13B-v1.5 on an affordable cloud GPU server (a T4 at $0.615/hour). The space is in so much flux right now—Joel ended up using MLC but the best option could change any minute.
Vicuna 13B quantized to 4-bit integers needed 7.5GB of the T4’s 16GB of VRAM, and returned tokens at 20/second.
An open challenge running MLC right now is around batching and concurrency: “I did try making 3 concurrent requests to the endpoint, and while they all stream tokens back and the server doesn’t OOM, the output of all 3 streams seem to actually belong to a single prompt.”
Recent articles
- LLM 0.22, the annotated release notes - 17th February 2025
- Run LLMs on macOS using llm-mlx and Apple's MLX framework - 15th February 2025
- URL-addressable Pyodide Python environments - 13th February 2025