Replacing my best friends with an LLM trained on 500,000 group chat messages (via) Izzy Miller used a 7 year long group text conversation with five friends from college to fine-tune LLaMA, such that it could simulate ongoing conversations. They started by extracting the messages from the iMessage SQLite database on their Mac, then generated a new training set from those messages and ran it using code from the Stanford Alpaca repository. This is genuinely one of the clearest explanations of the process of fine-tuning a model like this I’ve seen anywhere.
Recent articles
- Storing times for human events - 27th November 2024
- Ask questions of SQLite databases and CSV/JSON files in your terminal - 25th November 2024
- Weeknotes: asynchronous LLMs, synchronous embeddings, and I kind of started a podcast - 22nd November 2024