I am once again shocked at how much better image retrieval performance you can get if you embed highly opinionated summaries of an image, a summary that came out of a visual language model, than using CLIP embeddings themselves. If you tell the LLM that the summary is going to be embedded and used to do search downstream. I had one system go from 28% recall at 5 using CLIP to 75% recall at 5 using an LLM summary.
Recent articles
- Adding dynamic features to an aggressively cached website - 28th January 2026
- ChatGPT Containers can now run bash, pip/npm install packages, and download files - 26th January 2026
- Wilson Lin on FastRender: a browser built by thousands of parallel agents - 23rd January 2026