Half Stack Data Science: Programming with AI, with Simon Willison (via) I participated in this wide-ranging 50 minute conversation with David Asboth and Shaun McGirr. Topics we covered included applications of LLMs to data journalism, the challenges of building an intuition for how best to use these tool given their "jagged frontier" of capabilities, how LLMs impact learning to program and how local models are starting to get genuinely useful now.
At 27:47:
If you're a new programmer, my optimistic version is that there has never been a better time to learn to program, because it shaves down the learning curve so much. When you're learning to program and you miss a semicolon and you bang your head against the computer for four hours [...] if you're unlucky you quit programming for good because it was so frustrating. [...]
I've always been a project-oriented learner; I can learn things by building something, and now the friction involved in building something has gone down so much [...] So I think especially if you're an autodidact, if you're somebody who likes teaching yourself things, these are a gift from heaven. You get a weird teaching assistant that knows loads of stuff and occasionally makes weird mistakes and believes in bizarre conspiracy theories, but you have 24 hour access to that assistant.
If you're somebody who prefers structured learning in classrooms, I think the benefits are going to take a lot longer to get to you because we don't know how to use these things in classrooms yet. [...]
If you want to strike out on your own, this is an amazing tool if you learn how to learn with it. So you've got to learn the limits of what it can do, and you've got to be disciplined enough to make sure you're not outsourcing the bits you need to learn to the machines.
Recent articles
- Putting Gemini 2.5 Pro through its paces - 25th March 2025
- New audio models from OpenAI, but how much can we rely on them? - 20th March 2025
- Calling a wrap on my weeknotes - 20th March 2025