The realization hit me [when the GPT-3 paper came out] that an important property of the field flipped. In ~2011, progress in AI felt constrained primarily by algorithms. We needed better ideas, better modeling, better approaches to make further progress. If you offered me a 10X bigger computer, I'm not sure what I would have even used it for. GPT-3 paper showed that there was this thing that would just become better on a large variety of practical tasks, if you only trained a bigger one. Better algorithms become a bonus, not a necessity for progress in AGI. Possibly not forever and going forward, but at least locally and for the time being, in a very practical sense. Today, if you gave me a 10X bigger computer I would know exactly what to do with it, and then I'd ask for more.
Recent articles
- Trying out the new Gemini 2.5 model family - 17th June 2025
- The lethal trifecta for AI agents: private data, untrusted content, and external communication - 16th June 2025
- An Introduction to Google’s Approach to AI Agent Security - 15th June 2025