One interesting observation is the impact of environmental factors on training performance at scale. For Llama 3 405B , we noted a diurnal 1-2% throughput variation based on time-of-day. This fluctuation is the result of higher mid-day temperatures impacting GPU dynamic voltage and frequency scaling.
During training, tens of thousands of GPUs may increase or decrease power consumption at the same time, for example, due to all GPUs waiting for checkpointing or collective communications to finish, or the startup or shutdown of the entire training job. When this happens, it can result in instant fluctuations of power consumption across the data center on the order of tens of megawatts, stretching the limits of the power grid. This is an ongoing challenge for us as we scale training for future, even larger Llama models.
Recent articles
- An Introduction to Google’s Approach to AI Agent Security - 15th June 2025
- Design Patterns for Securing LLM Agents against Prompt Injections - 13th June 2025
- Comma v0.1 1T and 2T - 7B LLMs trained on openly licensed text - 7th June 2025