Mixtral of Experts. The Mixtral paper is out, exactly a month after the release of the Mixtral 8x7B model itself. Thanks to the paper I now have a reasonable understanding of how a mixture of experts model works: each layer has 8 available blocks, but a router model selects two out of those eight for each token passing through that layer and combines their output. “As a result, each token has access to 47B parameters, but only uses 13B active parameters during inference.”
The Mixtral token context size is an impressive 32k, and it compares extremely well against the much larger Llama 70B across a whole array of benchmarks.
Unsurprising but disappointing: there’s nothing in the paper at all about what it was trained on.
Recent articles
- Gemini 2.0 Flash: An outstanding multi-modal LLM with a sci-fi streaming mode - 11th December 2024
- ChatGPT Canvas can make API requests now, but it's complicated - 10th December 2024
- I can now run a GPT-4 class model on my laptop - 9th December 2024