Let's build the GPT Tokenizer. When Andrej Karpathy left OpenAI last week a lot of people expressed hope that he would be increasing his output of educational YouTube videos.
Here’s an in-depth 2 hour dive into how tokenizers work and how to build one from scratch, published this morning.
The section towards the end, “revisiting and explaining the quirks of LLM tokenization”, helps explain a number of different LLM weaknesses—inability to reverse strings, confusion over arithmetic and even a note on why YAML can work better than JSON when providing data to LLMs (the same data can be represented in less tokens).
Recent articles
- New audio models from OpenAI, but how much can we rely on them? - 20th March 2025
- Calling a wrap on my weeknotes - 20th March 2025
- Not all AI-assisted programming is vibe coding (but vibe coding rocks) - 19th March 2025