A solid pattern to build LLM Applications (feat. Claude) (via) Hrishi Olickel is one of my favourite prompt whisperers. In this YouTube video he walks through his process for building quick interactive applications with the assistance of Claude 3, spinning up an app that analyzes his meeting transcripts to extract participants and mentioned organisations, then presents a UI for exploring the results built with Next.js and shadcn/ui.
An interesting tip I got from this: use the weakest, not the strongest models to iterate on your prompts. If you figure out patterns that work well with Claude 3 Haiku they will have a significantly lower error rate with Sonnet or Opus. The speed of the weaker models also means you can iterate much faster, and worry less about the cost of your experiments.
Recent articles
- OpenAI's new open weight (Apache 2) models are really good - 5th August 2025
- ChatGPT agent's user-agent - 4th August 2025
- The ChatGPT sharing dialog demonstrates how difficult it is to design privacy preferences - 3rd August 2025