The largest model in the PaLM 2 family, PaLM 2-L, is significantly smaller than the largest PaLM model but uses more training compute. Our evaluation results show that PaLM 2 models significantly outperform PaLM on a variety of tasks, including natural language generation, translation, and reasoning. These results suggest that model scaling is not the only way to improve performance. Instead, performance can be unlocked by meticulous data selection and efficient architecture/objectives. Moreover, a smaller but higher quality model significantly improves inference efficiency, reduces serving cost, and enables the model’s downstream application for more applications and users.
Recent articles
- Weeknotes: datasette-enrichments, datasette-comments, sqlite-chronicle - 8th December 2023
- Datasette Enrichments: a new plugin framework for augmenting your data - 1st December 2023
- llamafile is the new best way to run a LLM on your own computer - 29th November 2023
- Prompt injection explained, November 2023 edition - 27th November 2023
- I'm on the Newsroom Robots podcast, with thoughts on the OpenAI board - 25th November 2023
- Weeknotes: DevDay, GitHub Universe, OpenAI chaos - 22nd November 2023