The largest model in the PaLM 2 family, PaLM 2-L, is significantly smaller than the largest PaLM model but uses more training compute. Our evaluation results show that PaLM 2 models significantly outperform PaLM on a variety of tasks, including natural language generation, translation, and reasoning. These results suggest that model scaling is not the only way to improve performance. Instead, performance can be unlocked by meticulous data selection and efficient architecture/objectives. Moreover, a smaller but higher quality model significantly improves inference efficiency, reduces serving cost, and enables the model’s downstream application for more applications and users.
— PaLM 2 Technical Report, PDF
Recent articles
- Reverse engineering Codex CLI to get GPT-5-Codex-Mini to draw me a pelican - 9th November 2025
- Video + notes on upgrading a Datasette plugin for the latest 1.0 alpha, with help from uv and OpenAI Codex CLI - 6th November 2025
- Code research projects with async coding agents like Claude Code and Codex - 6th November 2025