So something everybody I think pretty much agrees on, including Sam Altman, including Yann LeCun, is LLMs aren't going to make it. The current LLMs are not a path to ASI. They're getting more and more expensive, they're getting more and more slow, and the more we use them, the more we realize their limitations.
We're also getting better at taking advantage of them, and they're super cool and helpful, but they appear to be behaving as extremely flexible, fuzzy, compressed search engines, which when you have enough data that's kind of compressed into the weights, turns out to be an amazingly powerful operation to have at your disposal.
[...] And the thing you can really see missing here is this planning piece, right? So if you try to get an LLM to solve fairly simple graph coloring problems or fairly simple stacking problems, things that require backtracking and trying things and stuff, unless it's something pretty similar in its training, they just fail terribly.
[...] So that's the theory about what something like Q* might be, or just in general, how do we get past this current constraint that we have?
Recent articles
- Your job is to deliver code you have proven to work - 18th December 2025
- Gemini 3 Flash - 17th December 2025
- I ported JustHTML from Python to JavaScript with Codex CLI and GPT-5.2 in 4.5 hours - 15th December 2025