So something everybody I think pretty much agrees on, including Sam Altman, including Yann LeCun, is LLMs aren't going to make it. The current LLMs are not a path to ASI. They're getting more and more expensive, they're getting more and more slow, and the more we use them, the more we realize their limitations.
We're also getting better at taking advantage of them, and they're super cool and helpful, but they appear to be behaving as extremely flexible, fuzzy, compressed search engines, which when you have enough data that's kind of compressed into the weights, turns out to be an amazingly powerful operation to have at your disposal.
[...] And the thing you can really see missing here is this planning piece, right? So if you try to get an LLM to solve fairly simple graph coloring problems or fairly simple stacking problems, things that require backtracking and trying things and stuff, unless it's something pretty similar in its training, they just fail terribly.
[...] So that's the theory about what something like Q* might be, or just in general, how do we get past this current constraint that we have?
Recent articles
- My AI/LLM predictions for the next 1, 3 and 6 years, for Oxide and Friends - 10th January 2025
- Weeknotes: Starting 2025 a little slow - 4th January 2025
- I still don't think companies serve you ads based on spying through your microphone - 2nd January 2025