Llama 2 is about as factually accurate as GPT-4 for summaries and is 30X cheaper. Anyscale offer (cheap, fast) API access to Llama 2, so they’re not an unbiased source of information—but I really hope their claim here that Llama 2 70B provides almost equivalent summarization quality to GPT-4 holds up. Summarization is one of my favourite applications of LLMs, partly because it’s key to being able to implement Retrieval Augmented Generation against your own documents—where snippets of relevant documents are fed to the model and used to answer a user’s question. Having a really high performance openly licensed summarization model is a very big deal.
Recent articles
- Weeknotes: Embeddings, more embeddings and Datasette Cloud - 17th September 2023
- Build an image search engine with llm-clip, chat with models with llm chat - 12th September 2023
- LLM now provides tools for working with embeddings - 4th September 2023
- Datasette 1.0a4 and 1.0a5, plus weeknotes - 30th August 2023
- Making Large Language Models work for you - 27th August 2023
- Datasette Cloud, Datasette 1.0a3, llm-mlc and more - 16th August 2023