Running training jobs across multiple nodes scales really well. A common assumption is that scale inevitably means slowdowns: more GPUs means more synchronization overhead, especially with multiple nodes communicating across a network. But we observed that the performance penalty isn’t as harsh as what you might think. Instead, we found near-linear strong scaling: fixing the global batch size and training on more GPUs led to proportional increases in training throughput. On a 1.3B parameter model, 4 nodes means a 3.9x gain over one node. On 16 nodes, it’s 14.4x. This is largely thanks to the super fast interconnects that major cloud providers have built in: @awscloud EC2 P4d instances provide 400 Gbps networking bandwidth, @Azure provides 1600 Gbps, and @OraclePaaS provides 800 Gbps.
Recent articles
- Reverse engineering some updates to Claude - 31st July 2025
- Trying out Qwen3 Coder Flash using LM Studio and Open WebUI and LLM - 31st July 2025
- My 2.5 year old laptop can write Space Invaders in JavaScript now, using GLM-4.5 Air and MLX - 29th July 2025