These kinds of biases aren’t so much a technical problem as a sociotechnical one; ML models try to approximate biases in their underlying datasets and, for some groups of people, some of these biases are offensive or harmful. That means in the coming years there will be endless political battles about what the ‘correct’ biases are for different models to display (or not display), and we can ultimately expect there to be as many approaches as there are distinct ideologies on the planet. I expect to move into a fractal ecosystem of models, and I expect model providers will ‘shapeshift’ a single model to display different biases depending on the market it is being deployed into. This will be extraordinarily messy.
Recent articles
- Weeknotes: Embeddings, more embeddings and Datasette Cloud - 17th September 2023
- Build an image search engine with llm-clip, chat with models with llm chat - 12th September 2023
- LLM now provides tools for working with embeddings - 4th September 2023
- Datasette 1.0a4 and 1.0a5, plus weeknotes - 30th August 2023
- Making Large Language Models work for you - 27th August 2023
- Datasette Cloud, Datasette 1.0a3, llm-mlc and more - 16th August 2023