To make the analogy explicit, in Software 1.0, human-engineered source code (e.g. some .cpp files) is compiled into a binary that does useful work. In Software 2.0 most often the source code comprises 1) the dataset that defines the desirable behavior and 2) the neural net architecture that gives the rough skeleton of the code, but with many details (the weights) to be filled in. The process of training the neural network compiles the dataset into the binary — the final neural network. In most practical applications today, the neural net architectures and the training systems are increasingly standardized into a commodity, so most of the active “software development” takes the form of curating, growing, massaging and cleaning labeled datasets.
Recent articles
- ChatGPT Containers can now run bash, pip/npm install packages, and download files - 26th January 2026
- Wilson Lin on FastRender: a browser built by thousands of parallel agents - 23rd January 2026
- First impressions of Claude Cowork, Anthropic's general agent - 12th January 2026