Things About Real-World Data Science Not Discussed In MOOCs and Thought Pieces (via) Really good article, pointing out that carefully optimizing machine learning models is only a small part of the day-to-day work of a data scientist: cleaning up data, building dashboards, shipping models to production, deciding on trade-offs between performance and production and considering the product design and ethical implementations of what you are doing make up a much larger portion of the job.
Recent articles
- My review of Claude's new Code Interpreter, released under a very confusing name - 9th September 2025
- Recreating the Apollo AI adoption rate chart with GPT-5, Python and Pyodide - 9th September 2025
- GPT-5 Thinking in ChatGPT (aka Research Goblin) is shockingly good at search - 6th September 2025