How Adversarial Attacks Work. Adversarial attacks against machine learning classifiers involve constructing an input that deliberately produces the wrong classification. This article shows how these can be constructed, and includes examples generated using PyTorch which produce a sports car that gets identified as a toaster and a photo of Sylvester Stallone that gets classified as Keanu Reeves.
Recent articles
- Weeknotes: Embeddings, more embeddings and Datasette Cloud - 17th September 2023
- Build an image search engine with llm-clip, chat with models with llm chat - 12th September 2023
- LLM now provides tools for working with embeddings - 4th September 2023
- Datasette 1.0a4 and 1.0a5, plus weeknotes - 30th August 2023
- Making Large Language Models work for you - 27th August 2023
- Datasette Cloud, Datasette 1.0a3, llm-mlc and more - 16th August 2023