Introducing EmbeddingGemma. Brand new open weights (under the slightly janky Gemma license) 308M parameter embedding model from Google:
Based on the Gemma 3 architecture, EmbeddingGemma is trained on 100+ languages and is small enough to run on less than 200MB of RAM with quantization.
It's available via sentence-transformers, llama.cpp, MLX, Ollama, LMStudio and more.
As usual for these smaller models there's a Transformers.js demo (via) that runs directly in the browser (in Chrome variants) - Semantic Galaxy loads a ~400MB model and then lets you run embeddings against hundreds of text sentences, map them in a 2D space and run similarity searches to zoom to points within that space.
Recent articles
- My review of Claude's new Code Interpreter, released under a very confusing name - 9th September 2025
- Recreating the Apollo AI adoption rate chart with GPT-5, Python and Pyodide - 9th September 2025
- GPT-5 Thinking in ChatGPT (aka Research Goblin) is shockingly good at search - 6th September 2025