[On using generative AI for work despite the risk of errors:]
- AI is helpful despite being error-prone if it is faster to verify the output than it is to do the work yourself. For example, if you're using it to find a product that matches a given set of specifications, verification may be a lot faster than search.
- There are many uses where errors don't matter, like using it to enhance creativity by suggesting or critiquing ideas.
- At a meta level, if you use AI without a plan and simply turn to AI tools when you feel like it, then you're unlikely to be able to think through risks and mitigations. It is better to identify concrete ways to integrate AI into your workflows, with known benefits and risks, that you can employ repeatedly.
Recent articles
- My review of Claude's new Code Interpreter, released under a very confusing name - 9th September 2025
- Recreating the Apollo AI adoption rate chart with GPT-5, Python and Pyodide - 9th September 2025
- GPT-5 Thinking in ChatGPT (aka Research Goblin) is shockingly good at search - 6th September 2025