[...] much of the point of a model like o1 is not to deploy it, but to generate training data for the next model. Every problem that an o1 solves is now a training data point for an o3 (eg. any o1 session which finally stumbles into the right answer can be refined to drop the dead ends and produce a clean transcript to train a more refined intuition).
— gwern
Recent articles
- LLM 0.22, the annotated release notes - 17th February 2025
- Run LLMs on macOS using llm-mlx and Apple's MLX framework - 15th February 2025
- URL-addressable Pyodide Python environments - 13th February 2025