Simon Willison’s Weblog

Subscribe

sudoku-in-python-packaging (via) Absurdly clever hack by konsti: solve a Sudoku puzzle entirely using the Python package resolver!

First convert the puzzle into a requirements.in file representing the current state of the board:

git clone https://github.com/konstin/sudoku-in-python-packaging
cd sudoku-in-python-packaging
echo '5,3,_,_,7,_,_,_,_                                        
6,_,_,1,9,5,_,_,_
_,9,8,_,_,_,_,6,_
8,_,_,_,6,_,_,_,3
4,_,_,8,_,3,_,_,1
7,_,_,_,2,_,_,_,6
_,6,_,_,_,_,2,8,_
_,_,_,4,1,9,_,_,5
_,_,_,_,8,_,_,7,9' > sudoku.csv
python csv_to_requirements.py sudoku.csv requirements.in

That requirements.in file now contains lines like this for each of the filled-in cells:

sudoku_0_0 == 5
sudoku_1_0 == 3
sudoku_4_0 == 7

Then run uv pip compile to convert that into a fully fleshed out requirements.txt file that includes all of the resolved dependencies, based on the wheel files in the packages/ folder:

uv pip compile \
  --find-links packages/ \
  --no-annotate \
  --no-header \
  requirements.in > requirements.txt

The contents of requirements.txt is now the fully solved board:

sudoku-0-0==5
sudoku-0-1==6
sudoku-0-2==1
sudoku-0-3==8
...

The trick is the 729 wheel files in packages/ - each with a name like sudoku_3_4-8-py3-none-any.whl. I decompressed that wheel and it included a sudoku_3_4-8.dist-info/METADATA file which started like this:

Name: sudoku_3_4
Version: 8
Metadata-Version: 2.2
Requires-Dist: sudoku_3_0 != 8
Requires-Dist: sudoku_3_1 != 8
Requires-Dist: sudoku_3_2 != 8
Requires-Dist: sudoku_3_3 != 8
...

With a !=8 line for every other cell on the board that cannot contain the number 8 due to the rules of Sudoku (if 8 is in the 3, 4 spot). Visualized:

Sudoku grid partially filled. Number 8 in center. X's fill entire row and column containing 8, as well as the 3x3 box containing 8. Additional X's in center column above and below 8's box.

So the trick here is that the Python dependency resolver (now lightning fast thanks to uv) reads those dependencies and rules out every package version that represents a number in an invalid position. The resulting version numbers represent the cell numbers for the solution.