A common misconception about Transformers is to believe that they're a sequence-processing architecture. They're not.
They're a set-processing architecture. Transformers are 100% order-agnostic (which was the big innovation compared to RNNs, back in late 2016 -- you compute the full matrix of pairwise token interactions instead of processing one token at a time).
The way you add order awareness in a Transformer is at the feature level. You literally add to your token embeddings a position embedding / encoding that corresponds to its place in a sequence. The architecture itself just treats the input tokens as a set.
Recent articles
- My AI/LLM predictions for the next 1, 3 and 6 years, for Oxide and Friends - 10th January 2025
- Weeknotes: Starting 2025 a little slow - 4th January 2025
- I still don't think companies serve you ads based on spying through your microphone - 2nd January 2025