The main innovation here is just using more data. Specifically, Qwen2.5 Coder is a continuation of an earlier Qwen 2.5 model. The original Qwen 2.5 model was trained on 18 trillion tokens spread across a variety of languages and tasks (e.g, writing, programming, question answering). Qwen 2.5-Coder sees them train this model on an additional 5.5 trillion tokens of data. This means Qwen has been trained on a total of ~23T tokens of data – for perspective, Facebook’s LLaMa3 models were trained on about 15T tokens. I think this means Qwen is the largest publicly disclosed number of tokens dumped into a single language model (so far).
Recent articles
- A new SQL-powered permissions system in Datasette 1.0a20 - 4th November 2025
- New prompt injection papers: Agents Rule of Two and The Attacker Moves Second - 2nd November 2025
- Hacking the WiFi-enabled color screen GitHub Universe conference badge - 28th October 2025