Deterministic Quoting: Making LLMs Safe for Healthcare (via) Matt Yeung introduces Deterministic Quoting, a technique to help reduce the risk of hallucinations while working with LLMs. The key idea is to have parts of the output that are copied directly from relevant source documents, with a different visual treatment to help indicate that they are exact quotes, not generated output.
The AI chooses which section of source material to quote, but the retrieval of that text is a traditional non-AI database lookup. That’s the only way to guarantee that an LLM has not transformed text: don’t send it through the LLM in the first place.
The LLM may still pick misleading quotes or include hallucinated details in the accompanying text, but this is still a useful improvement.
The implementation is straight-forward: retrieved chunks include a unique reference, and the LLM is instructed to include those references as part of its replies. Matt's posts include examples of the prompts they are using for this.
Recent articles
- Notes from Bing Chat—Our First Encounter With Manipulative AI - 19th November 2024
- Project: Civic Band - scraping and searching PDF meeting minutes from hundreds of municipalities - 16th November 2024
- Qwen2.5-Coder-32B is an LLM that can code well that runs on my Mac - 12th November 2024