You can now train a 70b language model at home (via) Jeremy Howard and team: “Today, we’re releasing Answer.AI’s first project: a fully open source system that, for the first time, can efficiently train a 70b large language model on a regular desktop computer with two or more standard gaming GPUs (RTX 3090 or 4090).”
This is about fine-tuning an existing model, not necessarily training one from scratch.
There are two tricks at play here. The first is QLoRA, which can be used to train quantized models despite the reduced precision usually preventing gradient descent from working correctly.
QLoRA can bring the memory requirements for a 70b model down to 35GB, but gaming GPUs aren’t quite that big. The second trick is Meta’s Fully Sharded Data Parallel or FSDP library, which can shard a model across GPUs. Two consumer 24GB GPUs can then handle the 70b training run.
Recent articles
- OpenAI DevDay: Let’s build developer tools, not digital God - 2nd October 2024
- OpenAI DevDay 2024 live blog - 1st October 2024
- Weeknotes: Three podcasts, two trips and a new plugin system - 30th September 2024