Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and Mitigations (via) NIST—the National Institute of Standards and Technology, a US government agency, released a 106 page report on attacks against modern machine learning models, mostly covering LLMs.
Prompt injection gets two whole sections, one on direct prompt injection (which incorporates jailbreaking as well, which they misclassify as a subset of prompt injection) and one on indirect prompt injection.
They talk a little bit about mitigations, but for both classes of attack conclude: “Unfortunately, there is no comprehensive or foolproof solution for protecting models against adversarial prompting, and future work will need to be dedicated to investigating suggested defenses for their efficacy.”
Recent articles
- Gemini 2.0 Flash: An outstanding multi-modal LLM with a sci-fi streaming mode - 11th December 2024
- ChatGPT Canvas can make API requests now, but it's complicated - 10th December 2024
- I can now run a GPT-4 class model on my laptop - 9th December 2024