Google Research: Lumiere. The latest in text-to-video from Google Research, described as “a text-to-video diffusion model designed for synthesizing videos that portray realistic, diverse and coherent motion”.
Most existing text-to-video models generate keyframes and then use other models to fill in the gaps, which frequently leads to a lack of coherency. Lumiere “generates the full temporal duration of the video at once”, which avoids this problem.
Disappointingly but unsurprisingly the paper doesn’t go into much detail on the training data, beyond stating “We train our T2V model on a dataset containing 30M videos along with their text caption. The videos are 80 frames long at 16 fps (5 seconds)”.
The examples of “stylized generation” which combine a text prompt with a single reference image for style are particularly impressive.
Recent articles
- Highlights from my appearance on the Data Renegades podcast with CL Kao and Dori Wilson - 26th November 2025
- Claude Opus 4.5, and why evaluating new LLMs is increasingly difficult - 24th November 2025
- sqlite-utils 4.0a1 has several (minor) backwards incompatible changes - 24th November 2025